The growth of the maximal term of Dirichlet series

Authors

  • P.V. Filevych Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0002-1250-8907
  • O.B. Hrybel Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
https://doi.org/10.15330/cmp.10.1.79-81

Keywords:

Dirichlet series, maximal term, central index, generalized order
Published online: 2018-07-03

Abstract

Let Λ be the class of nonnegative sequences (λn) increasing to +, A(,+], LA be the class of continuous functions increasing to + on [A0,A), (λn)Λ, and F(s)=anesλn be a Dirichlet series such that its maximum term μ(σ,F)=maxn|an|eσλn is defined for every σ(,A). It is proved that for all functions αL+ and βLA the equalityρα,β(F)=max(ηn)Λ¯limnα(ηn)β(ηnλn+1λnln1|an|) holds, where ρα,β(F) is the generalized α,β-order of the function lnμ(σ,F), i.e. ρα,β(F)=0 if the function μ(σ,F) is bounded on (,A), and ρα,β(F)=¯limσAα(lnμ(σ,F))/β(σ) if the function μ(σ,F) is unbounded on (,A).

How to Cite
(1)
Filevych, P.; Hrybel, O. The Growth of the Maximal Term of Dirichlet Series. Carpathian Math. Publ. 2018, 10, 79-81.