Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series

Authors

  • S.I. Fedynyak Ukrainian Catholic University, 2A Kozelnytska str., 79076, Lviv, Ukraine
  • P.V. Filevych Lviv Polytechnic National University, 5 Mytropolyt Andrei str., 79013, Lviv, Ukraine https://orcid.org/0000-0002-1250-8907
https://doi.org/10.15330/cmp.12.2.269-279

Keywords:

Dirichlet series, maximal term, central index, central exponent, Young-conjugate function
Published online: 2020-08-06

Abstract

Let A(,+], Φ:[a,A)R be a continuous function such that xσΦ(σ) as σA for every xR, ˜Φ(x)=max{xσΦ(σ):σ[a,A)} be the Young-conjugate function of Φ, ¯Φ(x)=˜Φ(x)/x and Γ(x)=(˜Φ(x)lnx)/x for all sufficiently large x, (λn) be a nonnegative sequence increasing to +, and F(s)=n=0anesλn be a Dirichlet series such that its maximal term μ(σ,F)=max{|an|eσλn:n0} and central index ν(σ,F)=max{n0:|an|eσλn=μ(σ,F)} are defined for all σ<A. It is proved that if lnμ(σ,F)(1+o(1))Φ(σ) as σA, then the inequalities ¯limσAμ(σ,F)μ(σ,F)¯Φ1(σ)1,¯limσAλν(σ,F)Γ1(σ)1, hold, and these inequalities are sharp.

How to Cite
(1)
Fedynyak, S.; Filevych, P. Growth Estimates for the Maximal Term and Central Exponent of the Derivative of a Dirichlet Series. Carpathian Math. Publ. 2020, 12, 269-279.