The growth of the maximal term of Dirichlet series

Authors

  • P.V. Filevych Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0002-1250-8907
  • O.B. Hrybel Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
https://doi.org/10.15330/cmp.10.1.79-81

Keywords:

Dirichlet series, maximal term, central index, generalized order
Published online: 2018-07-03

Abstract

Let Λ be the class of nonnegative sequences (λn) increasing to +, A(,+], LA be the class of continuous functions increasing to + on [A0,A), (λn)Λ, and F(s)=anesλn be a Dirichlet series such that its maximum term μ(σ,F)=max is defined for every \sigma\in(-\infty,A). It is proved that for all functions \alpha\in L_{+\infty} and \beta\in L_A the equality\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)} holds, where \rho^*_{\alpha,\beta}(F) is the generalized \alpha,\beta-order of the function \ln\mu(\sigma,F), i.e. \rho^*_{\alpha,\beta}(F)=0 if the function \mu(\sigma,F) is bounded on (-\infty,A), and \rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma) if the function \mu(\sigma,F) is unbounded on (-\infty,A).

How to Cite
(1)
Filevych, P.; Hrybel, O. The Growth of the Maximal Term of Dirichlet Series. Carpathian Math. Publ. 2018, 10, 79-81.