The growth of the maximal term of Dirichlet series

Keywords:
Dirichlet series, maximal term, central index, generalized orderAbstract
Let Λ be the class of nonnegative sequences (λn) increasing to +∞, A∈(−∞,+∞], LA be the class of continuous functions increasing to +∞ on [A0,A), (λn)∈Λ, and F(s)=∑anesλn be a Dirichlet series such that its maximum term μ(σ,F)=max is defined for every \sigma\in(-\infty,A). It is proved that for all functions \alpha\in L_{+\infty} and \beta\in L_A the equality\rho^*_{\alpha,\beta}(F)=\max_{(\eta_n)\in\Lambda}\overline{\lim_{n\to\infty}}\frac{\alpha(\eta_n)}{\beta\left(\frac{\eta_n}{\lambda_n}+\frac{1}{\lambda_n}\ln\frac{1}{|a_n|}\right)} holds, where \rho^*_{\alpha,\beta}(F) is the generalized \alpha,\beta-order of the function \ln\mu(\sigma,F), i.e. \rho^*_{\alpha,\beta}(F)=0 if the function \mu(\sigma,F) is bounded on (-\infty,A), and \rho^*_{\alpha,\beta}(F)=\overline{\lim_{\sigma\uparrow A}}\alpha(\ln\mu(\sigma,F))/\beta(\sigma) if the function \mu(\sigma,F) is unbounded on (-\infty,A).