On the domain of convergence of general Dirichlet series with complex exponents

Authors

  • M.R. Kuryliak Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • O.B. Skaskiv Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
https://doi.org/10.15330/cmp.15.2.594-607

Keywords:

domain of convergence, abscissa of convergence, Dirichlet series
Published online: 2023-12-30

Abstract

Let (λn) be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series F(z)=+n=0anezλn, zC, we denote Gμ(F), Gc(F), Ga(F) the domains of the existence, of the convergence and of the absolute convergence of maximal term μ(z,F)=max, respectively. It is well known that G_\mu(F), G_a(F) are convex domains.

Let us denote \mathcal{N}_1(z):=\{n : \Re(z\lambda_n)>0\}, \mathcal{N}_2(z):=\{n : \Re(z\lambda_n)<0\} and \alpha^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}. Assume that a_n\to 0 as n\to +\infty. In the article, we prove the following statements.

1) If \alpha^{(2)}(\theta)<\alpha^{(1)}(\theta) for some \theta\in [0,\pi) then \big\{te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\}\subset G_\mu(F) as well as \big\{te^{i\theta} : t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.

2) G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.

3) If h:=\varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty), then \Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F). If h=+\infty then G_a(F)=G_c(F)=G_\mu(F), therefore G_c(F) is also a convex domain.

How to Cite
(1)
Kuryliak, M.; Skaskiv, O. On the Domain of Convergence of General Dirichlet Series With Complex Exponents. Carpathian Math. Publ. 2023, 15, 594-607.