On the abscises of the convergence of multiple Dirichlet series
Keywords:
multiple Dirichlet series, abscises of the convergence of multiple Dirichlet seriesAbstract
For multiple Dirichlet series of the form F(s)=∑‖ we establish relations between domains of the convergence G_c, absolutely convergence G_a and of the domain of the existence of the maximal term G_{\mu} of the series as follows: \gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1}, where e_{1}=(1,\dots,1)\in \mathbb{R}^p, \;\; \delta_0\in \mathbb{R}, by condition \varliminf\limits_{\|n\|\to\infty} \frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p; \gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta, where \delta\in\mathbb{R}^{p}, by condition \varliminf\limits_{\|n\|\to\infty} \frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.