Оцінки апроксимативних характеристик класів $B^{\Omega}_{p,\theta}$ періодичних функцій багатьох змінних із заданою мажорантою мішаних модулів неперервності у просторі $L_{q}$
Ключові слова:
ортопроекційний поперечник, мiшаний модуль неперервностi, лiнiйний оператор, ядро Валле-Пуссена, ядро Фейєра
Опубліковано онлайн:
2019-12-31
Анотація
В роботі продовжується вивчення апроксимативних характеристик класів $B^{\Omega}_{p,\theta}$ періодичних функцій багатьох змінних, мажоранта мішаних модулів неперервності яких містить як степеневі, так і логарифмічні множники. Oдержано точні за порядком оцінки ортопроекційних поперечників класів $B^{\Omega}_{p,\theta}$ у просторі $L_{q},$ $1\leq p<q<\infty,$ а також встановлено точні за порядком оцінки наближення цих класів функцій у просторі $L_{q}$ за допомогою лінійних операторів, які підпорядковані певним умовам.
Як цитувати
(1)
Федуник-Яремчук, О.; Гембарська, С. Оцінки апроксимативних характеристик класів $B^{\Omega}_{p,\theta}$ періодичних функцій багатьох змінних із заданою мажорантою мішаних модулів неперервності у просторі $L_{q}$. Carpathian Math. Publ. 2019, 11, 281-295.