Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity

Authors

  • O.V. Fedunyk-Yaremchuk Lesya Ukrainka Volyn National University, 13 Voli avenue, 43025, Lutsk, Ukraine
  • S.B. Hembars'ka Lesya Ukrainka Volyn National University, 13 Voli avenue, 43025, Lutsk, Ukraine
https://doi.org/10.15330/cmp.13.3.838-850

Keywords:

orthoprojective width, mixed modulus of continuity, linear operator, Vallée-Poussin kernel, Fejér kernel
Published online: 2021-12-30

Abstract

In this paper, we continue the study of approximation characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\Omega}_{p,\theta}$ in the space $L_{q},$ $1\leq p<q<\infty,$ and also establish the exact-order estimates of approximation for these classes of functions in the space $L_{q}$ by using linear operators satisfying certain conditions.

Article metrics
How to Cite
(1)
Fedunyk-Yaremchuk, O.; Hembars'ka, S. Approximation of Classes of Periodic Functions of Several Variables With Given Majorant of Mixed Moduli of Continuity. Carpathian Math. Publ. 2021, 13, 838-850.

Most read articles by the same author(s)