Weighted Hardy operators in local generalized Orlicz-Morrey spaces
Keywords:
weighted Hardy operator, local generalized Orlicz-Morrey space, local $BMO$ spaceAbstract
In this paper, we find sufficient conditions on general Young functions $(\Phi, \Psi)$ and the functions $(\varphi_1,\varphi_2)$ ensuring that the weighted Hardy operators $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ are of strong type from a local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ into another local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. We also obtain the boundedness of the commutators of $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ from $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ to $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$.