Leibniz algebras: a brief review of current results
Keywords:
Leibniz algebra, cyclic Leibniz algebra, ideal, subideal, contraideal, center, lower (upper) central series, finite-dimensional Leibniz algebra, nilpotent Leibniz algebra, Leibniz T-algebra, anticenter, antinilpotent Leibniz algebra
Published online:
2019-12-31
Abstract
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[\cdot,\cdot]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity $[[a,b],c]=[a,[b,c]]-[b,[a, c]]$ for all $a,b,c\in L$. This paper is a brief review of some current results, which related to finite-dimensional and infinite-dimensional Leibniz algebras.
How to Cite
(1)
Chupordia, V.; Pypka, A.; Semko, N.; Yashchuk, V. Leibniz Algebras: A Brief Review of Current Results. Carpathian Math. Publ. 2019, 11, 250-257.