Leibniz algebras: a brief review of current results

Keywords:
Leibniz algebra, cyclic Leibniz algebra, ideal, subideal, contraideal, center, lower (upper) central series, finite-dimensional Leibniz algebra, nilpotent Leibniz algebra, Leibniz T-algebra, anticenter, antinilpotent Leibniz algebra
Published online:
2019-12-31
Abstract
Let L be an algebra over a field F with the binary operations + and [⋅,⋅]. Then L is called a left Leibniz algebra if it satisfies the left Leibniz identity [[a,b],c]=[a,[b,c]]−[b,[a,c]] for all a,b,c∈L. This paper is a brief review of some current results, which related to finite-dimensional and infinite-dimensional Leibniz algebras.
How to Cite
(1)
Chupordia, V.; Pypka, A.; Semko, N.; Yashchuk, V. Leibniz Algebras: A Brief Review of Current Results. Carpathian Math. Publ. 2019, 11, 250-257.