Наномеханічні та коливні властивості тонких плівок оксиду ванадію, отриманих методом багатоступінчастого осадження
DOI:
https://doi.org/10.15330/pcss.25.4.871-879Ключові слова:
Оксид ванадію, VO₂, рентгенівська дифракція, фазові переходи, наноіндентування, V₄O₉, V3O7, Раманівська спектроскопіяАнотація
Тонкі плівки оксиду ванадію були виготовлені за допомогою багатоетапного процесу осадження, що включає магнетронне розпилення та послідовний відпал. Досліджено структурні, коливні та наномеханічні властивості плівок, для з’ясування впливу фазового складу на якість фазового переходу метал-ізолятор (MIT). Рентгенівська дифракція (XRD) і спектроскопія комбінаційного розсіювання виявили структурну еволюцію від квазіаморфних до нанокристалічних фаз після відпалу, з домінуванням переходу від VO₂ до текстурованого V₄O₉. Спостережувані фазові переходи супроводжуються зростанням твердості з 0,9 ГПа в аморфному першому шарі до 11–18 ГПа у всіх багатошарових (кристалічних) структурах. Підвищення механічної міцності пояснюється розвитком добре впорядкованої кристалічної текстури, що покращує міжатомні зв’язки і опір деформації. Раманівські коливні спектри, отримані на різних довжинах хвиль збудження, виявили резонансну чутливість до різних оксидних фаз, включаючи мінорну фазу V3O7, яка не виявляється за допомогою XRD, і селективний резонансний прояв фази V4O9 лише зі збудженням 671 нм. Температурна залежність Раманівських спектрів та питомого електричного опору показали кращі характеристики MIT для зразків із вищим вмістом VO₂, незважаючи на присутність в цих зразках інших фаз VₓOᵧ. Це вказує на визначальну роль структурного впорядкування для механічних і функціональних властивостей плівок оксиду ванадію, пропонуючи цінну інформацію для оптимізації методів обробки для передових електронних і оптичних застосувань.
Посилання
P. Hu, P. Hu, T.D. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long, Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications, Chem Rev., 123, 4353 (2023); https://doi.org/10.1021/acs.chemrev.2c00546.
M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.F. Isaieva, V.S. Yefanov, B.M. Romanyuk, Variation of the Metal-Insulator Phase Transition Temperature in VO2: An Overview of Some Possible Implementation Methods, Semicond. Physics, Quantum Electronics & Optoelectronics, 27 (2), 136 (2024); https://doi.org/10.15407/spqeo27.02.136.
Y. Skorenkyy, O. Kramar, Y. Dovhopyaty, Strong Correlation Effects in Vanadium Oxide Films, Physics and Chemistry of Solid State, 23(1), 62 (2022); https://doi.org/10.15330/pcss.23.1.62-66.
F. Urena-Begara, A. Crunteanu, J. Raskin, Raman and XPS Characterization of Vanadium Oxide Thin Films with Temperature, Appl. Surf. Sci., 403, 717 (2017); https://doi.org/10.1016/j.apsusc.2017.01.160.
S. Chouteau, S. Mansouri, M. Lemine, O. Ne, A.O. Suleiman, B. Le Drogoff, M. Chaker, Investigation of the Metal-to-Insulator Transition of N-doped VO2 (M1) Thin Films, Appl. Surf. Sci., 554, 149661 (2021); https://doi.org/10.1016/j.apsusc.2021.149661.
A. Romanyuk, R. Steiner, L. Marot, P. Oelhafen, Temperature-Induced Metal – Semiconductor Transition in W-doped VO2 Films Studied by Photoelectron Spectroscopy, Solar Energy Materials & Solar Cells, 91, 1831 (2007); https://doi.org/10.1016/j.solmat.2007.06.013.
S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, H. Liu, Critical Behaviour and Size Effects in Light-Induced Transition of Nanostructured VO2 Films, Phys Rev B, 82, 205425 (2010); https://doi.org/10.1103/PhysRevB.82.205425.
K.L. Gurunatha, S. Sathasivam, J. Li, M. Portnoi, I.P. Parkin, I. Papakonstantinou, Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal-Insulator Transition of VO2 Colloidal Particles, Adv Funct Mater., 30 (49), 2005311 (2020); https://doi.org/10.1002/adfm.202005311.
E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S.A. Wolf, R. Wincheski, R.A. Lukaszew, I. Novikova, Effect of a Substrate-Induced Microstructure on the Optical Properties of the Insulator- Metal Transition Temperature in VO2 Thin Films, J. Appl. Phys., 113, 233104 (2013); https://doi.org/10.1063/1.4811689.
M. Becker, J. Kessler, F. Kuhl, S.L. Benz, L. Chen, A. Polity, P.J. Klar, S. Chatterjee, Phase Control of Multivalent Vanadium Oxides VOx by Ion-Beam Sputter-Deposition, Phys. Stat. Sol (a), 219, 2100828 (2022); https://doi.org/10.1002/pssa.202100828.
A. Rana, A. Yadav, G. Gupta, A. Rana, Infrared Sensitive Mixed Phase of V7O16 and V2O5 Thin-Films, RSC Adv. 13, 15334 (2023); https://doi.org/10.1039/d3ra00752a.
N. Kumar, A. Rúa, J. Lu, F. Fernández, S. Lysenko, Ultrafast Excited-State Dynamics of V3O5 as a Signature of a Photoinduced Insulator-Metal Phase Transition, Phys Rev Lett., 119, 057602 (2017); https://doi.org/10.1103/PhysRevLett.119.057602.
S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda. Synthesis, Structure and Magnetic Properties of V4O9 – A Missing Link in Binary Vanadium Oxides, J. Solid State Chem., 183, 1496 (2010); https://doi.org/10.1016/j.jssc.2010.04.007.
C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S. Wen, S. Kasap, Characterization of Vanadium Oxide Thin Films with Different Stoichiometry Using Raman Spectroscopy, Thin Solid Films, 620, 64 (2016); https://doi.org/10.1016/j.tsf.2016.07.082 .
A Subrahmanyam, Y B. K. Reddy, and C L Nagendra. Nano-Vanadium Oxide Thin Films in Mixed Phase for Microbolometer Applications, J. Phys. D: Appl. Phys., 41, 195108 (2008); https://doi.org/10.1088/0022-3727/41/19/195108.
M. Abdel-Rahman, M. Zia and M. Alduraibi, Temperature-Dependent Resistive Properties of Vanadium Pentoxide/Vanadium Multi-Layer Thin Films for Microbolometer & Antenna-Coupled Microbolometer Applications, Sensors, 19, 1320 (2019); https://doi.org/10.3390/s19061320.
P.M. Lytvyn, V.M. Dzhagan, M.Ya. Valakh, A.A. Korchovyi, O.F. Isaieva, O.A. Stadnik, O.A. Kulbachynskyi, O.Yo. Gudymenko, B.M. Romanyuk, V.P. Melnik, Nanomechanical Properties of Polycrystalline Vanadium Oxide Thin Films of Different Phase Composition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 26, 388 (2023); https://doi.org/10.15407/spqeo26.04.388.
V.M. Dzhagan, M. Ya Valakh, O.F. Isaieva, V.O. Yukhymchuk, O.A. Stadnik, O. Yo Gudymenko, P.M. Lytvyn, O.A. Kulbachynskyi, V.S. Yefanov, B.M. Romanyuk, V.P. Melnik, Raman Fingerprints of Different Vanadium Oxides as Impurity Phases in VO2 Films, Optical Materials, 148, 114894 (2024); https://doi.org/10.1016/j.optmat.2024.114894.
A.A. Efremov, B.M. Romaniuk, V.P. Melnyk, O.A. Stadnik, T.M. Sabov, O.A. Kulbachinskiy, O.V. Dubikovskiy. Study of Fractality Nature in VO2 Films and its Influence on Metal-Insulator Phase Transition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 27 (1), 028 (2024); https://doi.org/10.15407/spqeo27.01.028.
V.V. Strelchuk, O.F. Kolomys, D.M. Maziar, V.P. Melnik, B.M. Romanyuk, O.Y. Gudymenko, O.V. Dubikovskyi, O.I. Liubchenko, Effect of Structural Disorder on the Modification of V–V and V–O Bond Lengths at the Metal-Dielectric Phase Transition in VO2 Thin Films, Materials Science in Semiconductor Processing, 174, 108224 (2024); https://doi.org/10.1016/j.mssp.2024.108224.
V. Melnik, I. Khatsevych, V. Kladko, A. Kuchuk, V. Nikirin, B. Romanyuk, Low-Temperature Method for Thermochromic High Ordered VO2 Phase Formation, Mater Lett. 68, 215 (2012); https://doi.org/10.1016/j.matlet.2011.10.075 .
Y. Goltvyanskyi, I. Khatsevych, A. Kuchuk, V. Kladko, V. Melnik, P. Lytvyn, V. Nikirin, B. Romanyuk, Structural Transformation and Functional Properties of Vanadium Oxide Films after Low-Temperature Annealing, Thin Solid Films, 564, 179 (2014); https://doi.org/10.1016/j.tsf.2014.05.067.
D. Singh, B. Viswanath, In Situ Nanomechanical Behaviour of Coexisting Insulating and Metallic Domains in VO2 Microbeams, J. Mater. Sci., 52 (10), 5589 (2017); https://doi.org/10.1007/s10853-017-0792-4.
H. Guo, K. Wang, Y. Deng, Y.Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, A.M. Minor, Nanomechanical Actuation from Phase Transitions in Individual VO2 Micro-Beams, Appl. Phys. Lett., 102, 231909 (2013); https://doi.org/10.1063/1.4810872.
Y.A. Birkhölzer, K. Sotthewes, N. Gauquelin, L. Riekehr, D. Jannis, E. Van Der Minne, Y. Bu, J. Verbeeck, H.J.W. Zandvliet, G. Koster, G. Rijnders, High-Strain-Induced Local Modification of the Electronic Properties of VO2 Thin Films, ACS Appl. Electron. Mater., 4 (12), 6020 (2022); https://doi.org/10.1021/acsaelm.2c01176.
M. Mazur, A. Lubańska, J. Domaradzki, D. Wojcieszak, Complex Research on Amorphous Vanadium Oxide Thin Films Deposited by Gas Impulse Magnetron Sputtering, Appl. Sci., 12 (18), 8966 (2022); https://doi.org/10.3390/app12188966.
V.P. Kladko, V.P. Melnik, О.I. Liubchenko, B.M. Romanyuk, О.Y. Gudymenko, Т.M. Sabov, О. V. Dubikovskyi, Z. V Maksimenko, О. V Kosulya, O.A. Kulbachynskyi, P.M. Lytvyn, О.O. Efremov, Semiconductor Physics Phase Transition in Vanadium Oxide Films Formed by Multistep Deposition, Semiconductor Physics, Quantum Electronics & Optoelectronics, 24, 362 (2021); https://doi.org/10.15407/spqeo24.04.362.
R. Nilsson, T. Lindblad, A. Andersson, Ammoxidation of Propane Over Antimony Vanadium-Oxide Catalysts, Journal of Catalysis, 148, 501 (1994); https://doi.org/10.1006/jcat.1994.1236.
C.A. Clifford, M.P. Seah, Quantification Issues in the Identification of Nanoscale Regions of Homopoly-mers Using Modulus Measurement Via AFM Nanoindentation. Appl. Surf. Sci., 252,1915 (2005); https://doi.org/10.1016/j.apsusc.2005.08.090.
T. Chudoba, M. Griepentrog, A. Dück et al., Young’s Modulus Measurements on Ultra-Thin Coatings, J. Mater. Res., 19, 301 (2004); https://doi.org/10.1557/jmr.2004.19.1.301.
Y. Liu, I. Sokolov, M.E. Dokukin, Y. Xiong, P. Peng, Can AFM be Used to Measure Absolute Values of Young’s Modulus of Nanocomposite Materials Down to the Nanoscale?, Nanoscale, 12 (23), 12432 (2020); https://doi.org/10.1039/D0NR02314K.
V. Dzhagan, B. Kempken, M. Valakh, J. Parisi, J. Kolny-Olesiak, DRT Zahn Probing the Structure of CuInS2-ZnS Core-Shell and Similar Nanocrystals by Raman Spectroscopy, Applied Surface Science, 395, 24 (2017); https://doi.org/10.1016/j.apsusc.2016.08.063.
O. Selyshchev, Y. Havryliuk, M.Ya. Valakh, V.O. Yukhymchuk, O. Raievska, O.L. Stroyuk, V. Dzhagan, and D.R.T. Zahn, Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu2ZnSnS4 Photovoltaic Absorbers, ACS Appl. Nano Mater., 3 (6), 5706 (2020); https://doi.org/10.1021/acsanm.0c00910.
A.O. Suleiman, S. Mansouri, N. Émond, B. Le Drogoff, T. Bégin, J. Margot, M. Chaker, Probing the Role of Thermal Vibrational Disorder in the SPT of VO2 by Raman Spectroscopy, Sci Rep., 11, 1620 (2021); https://doi.org/10.1038/s41598-020-79758-1.
V. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, D.R.T. Zahn, Phonon Raman Spectroscopy of Nanocrystalline Multinary Chalcogenides as a Probe of Complex Lattice Structures, J. Phys.: Condensed Matter, 35, 103001 (2022); https://doi.org/10.1088/1361-648X/acaa18.
C.W. Chang, M.H. Hong, W.F. Lee et al., Micro-Raman Characterization of Ge Diffusion and Si Stress Change in Thin Epitaxial Si1−xGex Layers on Si (100) After Rapid Thermal Annealing, J. Mater. Research., 27(9), 1314 (2012); https://doi.org/10.1557/jmr.2012.88.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Andrii Korchoviy, Petro Lytvyn , Volodymyr Dzhagan , Olexandr Gudymenko, Kateryna Svezhentsova, Mykola Boltovets, Viktor Strelchuk, Olexandr Kolesnikov, Oksana Isaieva, Volodymyr Yefanov, Viktor Melnik , Boris Romanyuk
Ця робота ліцензованаІз Зазначенням Авторства 3.0 Міжнародна.