Оптичні властивості стекол As2S3:Ag

Автор(и)

  • В.М. Кришеник Інститут Електронної Фізики НАН України, Ужгород, Україна
  • А.І. Погодін Ужгородський національний університет, Ужгород, Україна
  • М.Й. Філеп Ужгородський національний університет, Ужгород, Україна; Закарпатський угорський інститут ім. Ференца Ракоці II, Берегово, Україна
  • І.М. Войнарович Інститут Електронної Фізики НАН України, Ужгород, Україна
  • М.М. Поп Ужгородський національний університет, Ужгород, Україна
  • В.В. Рубіш Інститут електронної фізики НАН України, Ужгород, Україна
  • О.В. Гомоннай Інститут електронної фізики НАН України, Ужгород, Україна

DOI:

https://doi.org/10.15330/pcss.25.4.863-870

Ключові слова:

халькогеніди, халькогенідні стекла, край фундаментального поглинання, показник заломлення

Анотація

У статті описано результати вивчення впливу рівня внесення срібла в новосинтезованих стеклах Agx(As2S3)1-x (0 ≤ x ≤ 0.2) на край оптичного поглинання, ширину забороненої зони і дисперсію показника заломлення у видимому і ближньому інфрачервоному діапазонах. Отримані експериментальні залежності проаналізовано з допомогою одноосциляторної моделі Вемпла–Ді Доменіко. Показано, що зі збільшенням вмісту Ag у склі оптична ширина забороненої зони стає меншою, як і енергія одиночного осцилятора, натомість енергія дисперсії зростає, а ступінь іонності зв’язку залишається практично незмінним.

Посилання

K. Tanaka, K. Shimakawa. Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2021). https://doi.org/10.1007/978-3-030-69598-9.

A. Zakery, S.R Elliott, Optical properties and applications of chalcogenide glasses: a review, J. Non-Cryst. Solids, 330, 1 (2003); https://doi.org/10.1016/j.jnoncrysol.2003.08.064.

K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced effects and metastability in amorphous semiconductors and insulators, Adv. Phys., 44(6), 475 (1995); https://doi.org/10.1080/00018739500101576.

T. Wagner, B. Zhang, M. Fraenkl, S. Valkova, R. Vala, T. Hrbek, Metal-doped chalcogenides. In: The world scientific reference of amorphous materials: Structure, Properties, Modeling and Main Applications, Vol. 1 – Structure, Properties, Modeling and Applications of Amorphous Chalcogenides, A.V. Kolobov, K. Shimakawa (Eds.) (World Scientific 2021) 593–649. https://doi.org/10.1142/9789811215575_0018.

B. J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics, 5, 141 (2011); https://doi.org/10.1038/nphoton.2011.309.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices, Nat. Photonics, 8, 643 (2014); https://doi.org/10.1038/nphoton.2014.138.

V.M. Kryshenik, Yu.M. Azhniuk, V.S. Kovtunenko, All-optical patterning in azobenzene polymers and amorphous chalcogenides, J. Non-Cryst. Solids, 512, 112 (2019); https://doi.org/10.1016/j.jnoncrysol.2019.02.019.

B. Luther-Davies, Integrated optics: flexible chalcogenide photonics, Nat. Photonics, 8, 591 (2014); https://doi.org/10.1038/nphoton.2014.169.

V. M. Kryshenik, Dynamic photoinduced changes of optical characteristics and effect of optical memory in amorphous As–S film-based waveguides, J. Non-Cryst. Solids, 585, 121528 (2022); https://doi.org/10.1016/j.jnoncrysol.2022.121528.

P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, W. Shi, Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding, Opt. Express, 29(13), 20851 (2021); https://doi.org/10.1364/OE.430204.

B. Zhang, P. Zeng, Z. Yang, D. Xia, J. Zhao, Y. Sun, Y. Huang, J. Song, J. Pan, H. Cheng, D. Choi, Z. Li, On-chip chalcogenide microresonators with low-threshold parametric oscillation, Photonics Res., 9(7), 1272 (2021); https://doi.org/10.1364/PRJ.422435.

Y. Wang, S. Dai, Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review, PhotoniX, 2(1), 9 (2021); https://doi.org/10.1186/s43074-021-00031-3.

C.M. Schwarz, S.M. Kuebler, C. Rivero-Baleine, B. Triplett, M.Kang, Q. Altemose, C. Blanco, K.A. Richardson, Q. Du, S. Deckoff-Jones, J. Hu, Yifei Zhang, Y. Pan, C. Ríos, Structurally and morphologically engineered chalcogenide materials for optical and photonic devices, J. Opt. Microsyst., 1(1), 013502 (2021); https://doi.org/10.1117/1.JOM.1.1.013502.

K.K. Suzuki, T. Baba, Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express, 18(25), 26675 (2010); https://doi.org/10.1364/OE.18.026675.

L. Wei, J. Qian, L. Dong, M. Lu, Chalcogenide photonic crystals fabricated by soft imprint-assisted photodoping of silver, Small,16(19), 2000472 (2020); https://doi.org/10.1002/smll.202000472.

I. Anghel, A. Petris, , Design of an all-optical tunable 2D photonic crystal in As2S3 film, Opt. Commun, 574, 131247 (2024); https://doi.org/10.1016/j.optcom.2024.131247.

S. Y. Tee, D. Ponsford, C. L. Lay, X. Wang, X. Wang, D. C. J. Neo, T. Wu, Th Warintorn, J. C. C. Yeo, G. Guan, T.-C. Lee, M. Y. Han, Thermoelectric silver-based chalcogenides, Adv. Sci., 9(36), 2204624 (2022); https://doi.org/10.1002/advs.202204624.

M. Wuttig, H. Bhaskaran, T. Taubner, Phase-change materials for non-volatile photonic applications, Nat. Photonics,11(8), 465 (2017); https://doi.org/10.1038/nphoton.2017.126.

B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, C. Soci, Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing, Adv. Opt. Mater., 3(5), 635 (2015); https://doi.org/10.1002/adom.201400472.

S.G. Sarwat, T. Moraitis, C.D. Wright, H. Bhaskaran, Chalcogenide optomemristors for multi-factor neuromorphic computation, Nat. Commun., 13(1), 2247 (2022); https://doi.org/10.1038/s41467-022-29870-9.

A.H. Elfarash, B. Gholipour, Reconfigurable nanoionic and photoionic material and device platforms, Adv. Phys., X 9(1), 2338285 (2024); https://doi.org/10.1080/23746149.2024.2338285.

A. Pradel, M. Ribes, 7 – Ionic conductivity of chalcogenide glasses, In: J.-L. Adam, X. Zhang (Eds.), Chalcogenide Glasses, (Woodhead Publishing 2014) 169–208. https://doi.org/10.1533/9780857093561.1.169.

B. Gholipour, S. R. Elliott, M. J. Müller, M. Wuttig, D. W. Hewak, B. E. Hayden et al., Roadmap on chalcogenide photonics, J. Phys. Photonics, 5(1), 012501 (2023); https://doi.org/10.1088/2515-7647/ac9a91.

K.O. Čajko, D.L. Sekulić, S.R. Lukić-Petrović, Dielectric and bipolar resistive switching properties of Ag doped As–S–Se chalcogenide for non-volatile memory applications, Mater. Chem. Phys., 296, 127301 (2023); https://doi.org/10.1016/j.matchemphys.2023.127301.

M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, T.L. Alford, Structural details of Ge–rich and silver–doped chalcogenide glasses for nanoionic nonvolatile memory, Phys. Status Solidi A, 207(3), 621 (2010); https://doi.org/10.1002/pssa.200982902.

Y. Murakami, M. Wakaki, S. Kawabata, In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry, Phys. Status Solidi C, 5(5), 1283 (2008); https://doi.org/10.1002/pssc.200777797.

F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S. N. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As–S glasses: Raman and SEM studies, J. Non-Cryst. Solids, 355(37-42), 2010 (2009); https://doi.org/10.1016/j.jnoncrysol.2009.04.070.

M. Ohto, M. Itoh, K. Tanaka, Optical and electrical properties of Ag–As–S glasses, J. Appl. Phys., 77(3), 1034 (1995); https://doi.org/10.1063/1.359581.

A. Piarristeguy, M. Ramonda, N. Kuwata, A. Pradel, M. Ribes, Microstructure of Ag2S–As2S3 glasses, Solid State Ion. 177(35-36), 3157 (2006); https://doi.org/10.1016/j.ssi.2006.07.054.

C. Holbrook, P. Chen, D. I. Novita, P. Boolchand, Origin of conductivity threshold in the solid electrolyte glass system: (Ag2S)x(As2S3)1-x, IEEE Trans. Nanotechnol., 6(5), 530 (2007); https://doi.org/10.1109/TNANO.2007.905540.

E. Bychkov, Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features, Solid State Ion., 180(6-8), 510 (2009); https://doi.org/10.1016/j.ssi.2008.09.013.

I.I. Shpak, I. Studenyak, O. Shpak, Temperature dependence of the refractive index of vitreous alloys of the Ag-As-S system, Phys. Chem. Solid State, 19(3), 234 (2018); https://doi.org/10.15330/pcss.19.3.234-238.

I.P. Studenyak, O.I. Shpak, M. Kranjčec, M.M. Pop, I.I. Shpak, P. Kisała, P. Panas, R. Romaniuk, U. Zhunissova, A. Ormanbekova, Temperature studies of optical absorption edge in (Ag2S)x(As2S3)1-x (x<0.2) superionic glasses, Proc. SPIE 11581, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020, 115810T, 220 (2020); https://doi.org/10.1117/12.2580494.

R. Zaiter, M. Kassem, D. Fontanari, M. Bokova, F. Cousin, T. Usuki, E. Bychkov, Chemically-invariant percolation in silver thioarsenate glasses and two ion-transport regimes over 5 orders of magnitude in Ag content, J. Non-Cryst. Solids, 584, 121513 (2022); https://doi.org/10.1016/j.jnoncrysol.2022.121513.

M. Krbal, T.Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S. O. Kasap, M. Frumar, Properties and structure of Agx(As0.33S0.67)100−x bulk glasses, J. Non-Cryst. Solids, 353(13-15), 1232 (2007); https://doi.org/10.1016/j.jnoncrysol.2006.11.024.

S. Stehlik, J. Kolar, M. Bartos, M. Vlcek, M. Frumar, V. Zima, T. Wagner Conductivity in Ag–As–S (Se, Te) chalcogenide glasses, Solid State Ion., 181(37-38), 1625 (2010); https://doi.org/10.1016/j.ssi.2010.09.016.

S. Stehlik, J. Kolar, H. Haneda, I. Sakaguchi, M. Frumar, T. Wagner, Phase separation in chalcogenide glasses: the system AgAsSSe, Int. J. Appl. Glass Sci., 2(4), 301 (2011); https://doi.org/10.1111/j.2041-1294.2011.00065.x.

I. Kaban, P. Jóvári, T. Wágner, M. Bartoš, M. Frumar, B. Beuneu, W. Hoyer, N. Mattern, J. Eckert, Structural study of AsS2–Ag glasses over a wide concentration range, J. Non-Cryst. Solids, 357(19-20), 3430 (2011); https://doi.org/10.1016/j.jnoncrysol.2011.06.015.

T. Kawaguchi, A structural study of Ag-rich Ag–As–S glasses, Jpn. J. Appl. Phys., 37(1R), 29 (1998); https://doi.org/10.1143/JJAP.37.29.

T. Kawaguchi, S. Maruno, S. R. Elliott, , Compositional dependence of the photoinduced surface deposition of metallic silver in Ag–As–S glasses, J. Non-Cryst. Solids, 211(1-2), 187 (1997); https://doi.org/10.1016/S0022-3093(96)00625-4.

M. Mitkova, Y. Wang, P. Boolchand, Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett., 83(19), 3848 (1999); https://doi.org/10.1103/PhysRevLett.83.3848.

A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, I. Grillo, G. J. Cuello, V. Cristiglio, A. Pradel, Local vibrational and mechanical characterization of Ag conducting chalcogenide glasses, J. Alloys Compd., 762, 906 (2018); https://doi.org/10.1016/j.jallcom.2018.05.280.

J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids, 8, 569 (1972); https://doi.org/10.1016/0022-3093(72)90194-9.

A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisakar, A. Gubanova, G. Triduh, Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording, Opt. Mater., 94, 393 (2019); https://doi.org/10.1016/j.optmat.2019.06.016.

S. H. Wemple, M. DiDomenico Behavior of the electronic dielectric constant in covalent and ionic materials Jr, Phys. Rev., B 3(4), 1338 (1971); https://doi.org/10.1103/PhysRevB.3.1338.

J. M. González‐Leal, The Wemple–DiDomenico model as a tool to probe the building blocks conforming a glass, Phys. Status Solidi, B 250(5), 1044 (2013); https://doi.org/10.1002/pssb.201248487.

О.І. Shpak, М.М. Pop, І.І. Shpak, I.P. Studenyak, Refractometric studies of chalcogenide glasses in Ag–As–S system, Opt. Mater., 35(2), 297 (2012); https://doi.org/10.1016/j.optmat.2012.09.004.

S.I. Vyatkin, O.N. Romanyuk, S.V. Pavlov, A. Kotyra, A. Mussabekova, Offsetting and blending with perturbation functions, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082Y, 909 (2018); https://doi.org/10.1117/12.2280983.

K. Tanaka, , Optical properties and photoinduced changes in amorphous As–S films, Thin Solid Films, 66, 271 (1980); https://doi.org/10.1016/0040-6090(80)90381-8.

##submission.downloads##

Опубліковано

2024-12-13

Як цитувати

Кришеник , В., Погодін, А., Філеп, М., Войнарович, І., Поп, М., Рубіш, В., & Гомоннай, О. (2024). Оптичні властивості стекол As2S3:Ag. Фізика і хімія твердого тіла, 25(4), 863–870. https://doi.org/10.15330/pcss.25.4.863-870

Номер

Розділ

Фізико-математичні науки

Статті цього автора (авторів), які найбільше читають