Optical properties of As2S3:Ag glasses
DOI:
https://doi.org/10.15330/pcss.25.4.863-870Keywords:
chalcogenides, chalcogenide glasses, absorption edge, refractive indexAbstract
The paper describes the results of the studies of the effect of silver incorporation degree in newly synthesised Agx(As2S3)1-x (0 ≤ x ≤ 0.2) glasses on their optical absorption edge, bandgap energy, and refractive index dispersion in the visible and near-infrared range. The obtained experimental dependences are analysed using a single-oscillator Wemple–DiDomenico model. The optical bandgap energy as well as the single oscillator energy is shown to decrease with the Ag content in the glass while the dispersion energy increases and the bond ionicity degree remains practically unchanged.
References
K. Tanaka, K. Shimakawa. Amorphous Chalcogenide Semiconductors and Related Materials (Springer, 2021). https://doi.org/10.1007/978-3-030-69598-9.
A. Zakery, S.R Elliott, Optical properties and applications of chalcogenide glasses: a review, J. Non-Cryst. Solids, 330, 1 (2003); https://doi.org/10.1016/j.jnoncrysol.2003.08.064.
K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced effects and metastability in amorphous semiconductors and insulators, Adv. Phys., 44(6), 475 (1995); https://doi.org/10.1080/00018739500101576.
T. Wagner, B. Zhang, M. Fraenkl, S. Valkova, R. Vala, T. Hrbek, Metal-doped chalcogenides. In: The world scientific reference of amorphous materials: Structure, Properties, Modeling and Main Applications, Vol. 1 – Structure, Properties, Modeling and Applications of Amorphous Chalcogenides, A.V. Kolobov, K. Shimakawa (Eds.) (World Scientific 2021) 593–649. https://doi.org/10.1142/9789811215575_0018.
B. J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics, 5, 141 (2011); https://doi.org/10.1038/nphoton.2011.309.
L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices, Nat. Photonics, 8, 643 (2014); https://doi.org/10.1038/nphoton.2014.138.
V.M. Kryshenik, Yu.M. Azhniuk, V.S. Kovtunenko, All-optical patterning in azobenzene polymers and amorphous chalcogenides, J. Non-Cryst. Solids, 512, 112 (2019); https://doi.org/10.1016/j.jnoncrysol.2019.02.019.
B. Luther-Davies, Integrated optics: flexible chalcogenide photonics, Nat. Photonics, 8, 591 (2014); https://doi.org/10.1038/nphoton.2014.169.
V. M. Kryshenik, Dynamic photoinduced changes of optical characteristics and effect of optical memory in amorphous As–S film-based waveguides, J. Non-Cryst. Solids, 585, 121528 (2022); https://doi.org/10.1016/j.jnoncrysol.2022.121528.
P. Jean, A. Douaud, S. LaRochelle, Y. Messaddeq, W. Shi, Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding, Opt. Express, 29(13), 20851 (2021); https://doi.org/10.1364/OE.430204.
B. Zhang, P. Zeng, Z. Yang, D. Xia, J. Zhao, Y. Sun, Y. Huang, J. Song, J. Pan, H. Cheng, D. Choi, Z. Li, On-chip chalcogenide microresonators with low-threshold parametric oscillation, Photonics Res., 9(7), 1272 (2021); https://doi.org/10.1364/PRJ.422435.
Y. Wang, S. Dai, Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review, PhotoniX, 2(1), 9 (2021); https://doi.org/10.1186/s43074-021-00031-3.
C.M. Schwarz, S.M. Kuebler, C. Rivero-Baleine, B. Triplett, M.Kang, Q. Altemose, C. Blanco, K.A. Richardson, Q. Du, S. Deckoff-Jones, J. Hu, Yifei Zhang, Y. Pan, C. Ríos, Structurally and morphologically engineered chalcogenide materials for optical and photonic devices, J. Opt. Microsyst., 1(1), 013502 (2021); https://doi.org/10.1117/1.JOM.1.1.013502.
K.K. Suzuki, T. Baba, Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express, 18(25), 26675 (2010); https://doi.org/10.1364/OE.18.026675.
L. Wei, J. Qian, L. Dong, M. Lu, Chalcogenide photonic crystals fabricated by soft imprint-assisted photodoping of silver, Small,16(19), 2000472 (2020); https://doi.org/10.1002/smll.202000472.
I. Anghel, A. Petris, , Design of an all-optical tunable 2D photonic crystal in As2S3 film, Opt. Commun, 574, 131247 (2024); https://doi.org/10.1016/j.optcom.2024.131247.
S. Y. Tee, D. Ponsford, C. L. Lay, X. Wang, X. Wang, D. C. J. Neo, T. Wu, Th Warintorn, J. C. C. Yeo, G. Guan, T.-C. Lee, M. Y. Han, Thermoelectric silver-based chalcogenides, Adv. Sci., 9(36), 2204624 (2022); https://doi.org/10.1002/advs.202204624.
M. Wuttig, H. Bhaskaran, T. Taubner, Phase-change materials for non-volatile photonic applications, Nat. Photonics,11(8), 465 (2017); https://doi.org/10.1038/nphoton.2017.126.
B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, C. Soci, Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing, Adv. Opt. Mater., 3(5), 635 (2015); https://doi.org/10.1002/adom.201400472.
S.G. Sarwat, T. Moraitis, C.D. Wright, H. Bhaskaran, Chalcogenide optomemristors for multi-factor neuromorphic computation, Nat. Commun., 13(1), 2247 (2022); https://doi.org/10.1038/s41467-022-29870-9.
A.H. Elfarash, B. Gholipour, Reconfigurable nanoionic and photoionic material and device platforms, Adv. Phys., X 9(1), 2338285 (2024); https://doi.org/10.1080/23746149.2024.2338285.
A. Pradel, M. Ribes, 7 – Ionic conductivity of chalcogenide glasses, In: J.-L. Adam, X. Zhang (Eds.), Chalcogenide Glasses, (Woodhead Publishing 2014) 169–208. https://doi.org/10.1533/9780857093561.1.169.
B. Gholipour, S. R. Elliott, M. J. Müller, M. Wuttig, D. W. Hewak, B. E. Hayden et al., Roadmap on chalcogenide photonics, J. Phys. Photonics, 5(1), 012501 (2023); https://doi.org/10.1088/2515-7647/ac9a91.
K.O. Čajko, D.L. Sekulić, S.R. Lukić-Petrović, Dielectric and bipolar resistive switching properties of Ag doped As–S–Se chalcogenide for non-volatile memory applications, Mater. Chem. Phys., 296, 127301 (2023); https://doi.org/10.1016/j.matchemphys.2023.127301.
M. Mitkova, Y. Sakaguchi, D. Tenne, S. K. Bhagat, T.L. Alford, Structural details of Ge–rich and silver–doped chalcogenide glasses for nanoionic nonvolatile memory, Phys. Status Solidi A, 207(3), 621 (2010); https://doi.org/10.1002/pssa.200982902.
Y. Murakami, M. Wakaki, S. Kawabata, In-situ observation of photodoping phenomena in chalcogenide glass by spectroscopic ellipsometry, Phys. Status Solidi C, 5(5), 1283 (2008); https://doi.org/10.1002/pssc.200777797.
F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S. N. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As–S glasses: Raman and SEM studies, J. Non-Cryst. Solids, 355(37-42), 2010 (2009); https://doi.org/10.1016/j.jnoncrysol.2009.04.070.
M. Ohto, M. Itoh, K. Tanaka, Optical and electrical properties of Ag–As–S glasses, J. Appl. Phys., 77(3), 1034 (1995); https://doi.org/10.1063/1.359581.
A. Piarristeguy, M. Ramonda, N. Kuwata, A. Pradel, M. Ribes, Microstructure of Ag2S–As2S3 glasses, Solid State Ion. 177(35-36), 3157 (2006); https://doi.org/10.1016/j.ssi.2006.07.054.
C. Holbrook, P. Chen, D. I. Novita, P. Boolchand, Origin of conductivity threshold in the solid electrolyte glass system: (Ag2S)x(As2S3)1-x, IEEE Trans. Nanotechnol., 6(5), 530 (2007); https://doi.org/10.1109/TNANO.2007.905540.
E. Bychkov, Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features, Solid State Ion., 180(6-8), 510 (2009); https://doi.org/10.1016/j.ssi.2008.09.013.
I.I. Shpak, I. Studenyak, O. Shpak, Temperature dependence of the refractive index of vitreous alloys of the Ag-As-S system, Phys. Chem. Solid State, 19(3), 234 (2018); https://doi.org/10.15330/pcss.19.3.234-238.
I.P. Studenyak, O.I. Shpak, M. Kranjčec, M.M. Pop, I.I. Shpak, P. Kisała, P. Panas, R. Romaniuk, U. Zhunissova, A. Ormanbekova, Temperature studies of optical absorption edge in (Ag2S)x(As2S3)1-x (x<0.2) superionic glasses, Proc. SPIE 11581, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020, 115810T, 220 (2020); https://doi.org/10.1117/12.2580494.
R. Zaiter, M. Kassem, D. Fontanari, M. Bokova, F. Cousin, T. Usuki, E. Bychkov, Chemically-invariant percolation in silver thioarsenate glasses and two ion-transport regimes over 5 orders of magnitude in Ag content, J. Non-Cryst. Solids, 584, 121513 (2022); https://doi.org/10.1016/j.jnoncrysol.2022.121513.
M. Krbal, T.Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S. O. Kasap, M. Frumar, Properties and structure of Agx(As0.33S0.67)100−x bulk glasses, J. Non-Cryst. Solids, 353(13-15), 1232 (2007); https://doi.org/10.1016/j.jnoncrysol.2006.11.024.
S. Stehlik, J. Kolar, M. Bartos, M. Vlcek, M. Frumar, V. Zima, T. Wagner Conductivity in Ag–As–S (Se, Te) chalcogenide glasses, Solid State Ion., 181(37-38), 1625 (2010); https://doi.org/10.1016/j.ssi.2010.09.016.
S. Stehlik, J. Kolar, H. Haneda, I. Sakaguchi, M. Frumar, T. Wagner, Phase separation in chalcogenide glasses: the system AgAsSSe, Int. J. Appl. Glass Sci., 2(4), 301 (2011); https://doi.org/10.1111/j.2041-1294.2011.00065.x.
I. Kaban, P. Jóvári, T. Wágner, M. Bartoš, M. Frumar, B. Beuneu, W. Hoyer, N. Mattern, J. Eckert, Structural study of AsS2–Ag glasses over a wide concentration range, J. Non-Cryst. Solids, 357(19-20), 3430 (2011); https://doi.org/10.1016/j.jnoncrysol.2011.06.015.
T. Kawaguchi, A structural study of Ag-rich Ag–As–S glasses, Jpn. J. Appl. Phys., 37(1R), 29 (1998); https://doi.org/10.1143/JJAP.37.29.
T. Kawaguchi, S. Maruno, S. R. Elliott, , Compositional dependence of the photoinduced surface deposition of metallic silver in Ag–As–S glasses, J. Non-Cryst. Solids, 211(1-2), 187 (1997); https://doi.org/10.1016/S0022-3093(96)00625-4.
M. Mitkova, Y. Wang, P. Boolchand, Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett., 83(19), 3848 (1999); https://doi.org/10.1103/PhysRevLett.83.3848.
A. Piarristeguy, R. Le Parc, M. Ramonda, R. Escalier, I. Grillo, G. J. Cuello, V. Cristiglio, A. Pradel, Local vibrational and mechanical characterization of Ag conducting chalcogenide glasses, J. Alloys Compd., 762, 906 (2018); https://doi.org/10.1016/j.jallcom.2018.05.280.
J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids, 8, 569 (1972); https://doi.org/10.1016/0022-3093(72)90194-9.
A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisakar, A. Gubanova, G. Triduh, Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording, Opt. Mater., 94, 393 (2019); https://doi.org/10.1016/j.optmat.2019.06.016.
S. H. Wemple, M. DiDomenico Behavior of the electronic dielectric constant in covalent and ionic materials Jr, Phys. Rev., B 3(4), 1338 (1971); https://doi.org/10.1103/PhysRevB.3.1338.
J. M. González‐Leal, The Wemple–DiDomenico model as a tool to probe the building blocks conforming a glass, Phys. Status Solidi, B 250(5), 1044 (2013); https://doi.org/10.1002/pssb.201248487.
О.І. Shpak, М.М. Pop, І.І. Shpak, I.P. Studenyak, Refractometric studies of chalcogenide glasses in Ag–As–S system, Opt. Mater., 35(2), 297 (2012); https://doi.org/10.1016/j.optmat.2012.09.004.
S.I. Vyatkin, O.N. Romanyuk, S.V. Pavlov, A. Kotyra, A. Mussabekova, Offsetting and blending with perturbation functions, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082Y, 909 (2018); https://doi.org/10.1117/12.2280983.
K. Tanaka, , Optical properties and photoinduced changes in amorphous As–S films, Thin Solid Films, 66, 271 (1980); https://doi.org/10.1016/0040-6090(80)90381-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 V.M. Kryshenik, A.I. Pogodin, M.J. Filep, I.M. Voynarovych, M.M. Pop, V.V. Rubish, A.V. Gomonnai
This work is licensed under a Creative Commons Attribution 3.0 Unported License.