Integral mean of Green’s potentials and their conjugate

Authors

  • Ya.V. Vasyl'kiv Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • M.Ya. Kravec Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
https://doi.org/10.15330/cmp.5.1.19-29

Keywords:

Green's potentials, conjugate function, Lebesgue integral means, distribution of values of subharmonic functions
Published online: 2013-06-17

Abstract

The best possible estimates for Lebesgue integral means $m_q(r,F)\; (1\le q<+\infty)$ for the pair of functions $F= g+i\:\breve{g}$, here $g$ - Green's potential, $\breve{g}$ - function conjugate to $g$, was obtained. It generalizes well-known results of Ya.V. Vasyl'kiv and A.A. Kondratyuk for logarithms $\log\; B$ of Blaschke products $B$ in terms of counting function $n(r,0,B)\; (0<r<1)$ of their zeroes.

Article metrics
How to Cite
(1)
Vasyl'kiv, Y.; Kravec, M. Integral Mean of Green’s Potentials and Their Conjugate. Carpathian Math. Publ. 2013, 5, 19-29.