Inverse boundary value problems for diffusion-wave equation with generalized functions in right-hand sides

Authors

  • A.O. Lopushansky Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0002-1448-964X
  • H.P. Lopushanska Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
https://doi.org/10.15330/cmp.6.1.79-90

Keywords:

fractional derivative, inverse boundary value problem, Green vector-function, operator equation
Published online: 2014-07-14

Abstract

We prove the unique solvability of the problem on determination of the solution u(x,t) of the first boundary value problem for equation

ut(β)a(t)Δu=F0(x)g(t),(x,t)(0,l)×(0,T],

with fractional derivative ut(β) of the order β(0,2), generalized functions in initial conditions, and also determination of unknown continuous coefficient a(t)>0,t[0,T] (or unknown continuous function g(t)) under given the values (a(t)ux(,t),φ0()) ((u(,t),φ0()), respectively) of according generalized function onto some test function φ0(x).

How to Cite
(1)
Lopushansky, A.; Lopushanska, H. Inverse Boundary Value Problems for Diffusion-Wave Equation With Generalized Functions in Right-Hand Sides. Carpathian Math. Publ. 2014, 6, 79-90.