The topologization of the space of separately continuous functions

Authors

  • H.A. Voloshyn Bukovinian State Financial and Economics University, 1 Stern str., 58000, Chernivtsi, Ukraine
  • V.K. Maslyuchenko Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
https://doi.org/10.15330/cmp.5.2.199-207

Keywords:

separately continuous functions, polynomials of two variables, topology of the layer uniform convergence, completeness, Hausdorff property, metrizability, separability
Published online: 2013-12-30

Abstract

Here we introduce locally convex topology T of the layer uniform convergence on the space S=CC[0,1]2 of all separately continuous functions f:[0,1]2R, we prove that the space (S,T) is complete and it is not metrizable one, the space P of all polynomials of two variables on [0,1]2 is everywhere dense in S, and so, S is separable.

Article metrics
How to Cite
(1)
Voloshyn, H.; Maslyuchenko, V. The Topologization of the Space of Separately Continuous Functions. Carpathian Math. Publ. 2013, 5, 199-207.