Effect of silver ions on the optical properties of colloidal solutions of CdS/L-Cysteine nanoparticles

Authors

  • O. Krupko Bukovinian State Medical University, Chernivtsi, Ukraine
  • L.P. Shcherbak Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • Yu.B. Khalavka Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • V.G. Pylypko Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.4.910-916

Keywords:

heterostructures, CdS nanoparticles, Ag+ ions, optical properties, photoluminescence

Abstract

The synthesis of CdS/Ag+ heterostructures was carried out based on colloidal solutions of CdS nanoparticles stabilized by the amino acid L-cysteine ​​by the method of ion substitution and co-precipitation from aqueous solutions at room temperature and a hydrogen index value of 7.

The effect of argentum ions on the optical properties of colloidal solutions of cadmium sulfide nanoparticles in the conditions of an oxidizing environment was investigated.

Argentum ion concentrations were determined, the introduction of which leads to an increase in the photoluminescence of the system and the growth of nanoparticles compared to the original colloidal solution of CdS/L-Cysteine ​​NPs.

References

A. Singh, D. Singh, B. Ahmed, & A.K. Ojha, Sun/UV-light driven photocatalytic degradation of rhodamine B dye by Zn doped CdS nanostructures as photocatalyst, Materials Chemistry and Physics, 277, 125531 (2022); https://doi.org/10.1016/j.matchemphys.2021.125531.

Jichao Zhu, Jie He, Liangguo Da, Lifang Hu. Synthesis and visible-light photocatalytic potential of nanocomposite based on the cadmium sulfide and titanoniobate, Materials Chemistry and Physics, 253, 123408 (2020); https://doi.org/10.1016/j.matchemphys.2020.123408.

Chuanbiao Bie, Junwei Fu, Bei Cheng, Liuyang Zhang. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation, Applied Surface Science, 462, 606 (2018); https://doi.org/10.1016/j.apsusc.2018.08.130.

Sajad Karimzadeh, Kiumars Bahrami. Role of L-cysteine and CdS as promoted agents in photocatalytic activity of TiO2 nanoparticles, Journal of Environmental Chemical Engineering, 7(6), 103454 (2019); https://doi.org/10.1016/j.jece.2019.103454.

N.V. Hullavarad, S.S. Hullavarad, P.C. Karulkar, Cadmium sulphide (CdS) nanotechnology: synthesis and applications, J. Nanosci. Technol., 8(7), 3272 (2008); https://doi.org/110.1166/jnn.2008.145.

T. Zhai, X. Fang, Liang L., Y. Bango, D. Golberg. One-dimensional CdS nanostructures: synthesis, properties and applications. Nanoscale, 2(2), 168 (2010); https://doi.org/10.1039/B9NR00415G.

M. Berr, A. Vaneski, A. S. Susha, J. Rodríguez-Fernández. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation, Appl. Phys. Lett., 97(9), 093108 (2010); https://doi.org/10.1063/1.3480613.

Gai, Qixiao, Ren, Shoutian, Zheng, Xiaochun, Liu, Wenjun, Dong, Quanli. Enhanced photocatalytic performance of Ag/CdS by L-cysteine functionalization: Combination of introduced co-catalytic groups and optimized injection of hot electrons, Applied Surface Science, 579, 151838 (2022); https://doi.org/10.1016/j.apsusc.2021.151838.

T. Iqbal, G. Ara, N.R. Khalid, et al. Simple synthesis of Ag-doped CdS nanostructure material with excellent properties, Appl Nanosci, 10, 23 (2020); https://doi.org/10.1007/s13204-019-01044-y.

N. Singh, S. Prajapati, Prateek, R. Kumar Gupta. Investigation of Ag doping and ligand engineering on green synthesized CdS quantum dots for tuning their optical properties, Nanofabrication, 7, 89 (2022); https://doi.org/10.37819/nanofab.007.212.

S. Ravikumar, Durai Mani, E. Chicardi, R. Sepúlveda, Krishnakumar Balu, V. Pandiyan, Young-Ho Ahn. Development of highly efficient cost-effective CdS/Ag nanocomposite for removal of azo dyes under UV and solar light, Ceramics International, 49(6), 9551 (2023); https://doi.org/10.1016/j.ceramint.2022.11.123.

A. Nain, R. Pal Chahal, E. Dhanda, S. Dahiya. The Electrochemical Society (ECS), find out more, ECS Journal of Solid State Science and Technology, 12(7), 073006 (2023); https://doi.org/10.1149/2162-8777/ace47b.

Kanika Khurana, Nirmala Rani, Neena Jaggi. Enhanced photoluminescence of CdS quantum dots thin films on Cu and Ag nanoparticles, Thin Solid Films, 737, 138928 (2021); https://doi.org/10.1016/j.tsf.2021.138928.

Chang Y-C, Lin Y-R. Construction of Ag/Ag2S/CdS Heterostructures through a Facile Two-Step Wet Chemical Process for Efficient Photocatalytic Hydrogen Production, Nanomaterials, 13(12), 1815 (2023); https://doi.org/10.3390/nano13121815.

H. Zhang, S. Qi, H. Wang, G. Zhang, K. Zhu, W. Ma. Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochemical Platform, Symmetry, 15(4), 896 (2023); https://doi.org/10.3390/sym15040896.

D. Ghosh Quantum dot based probing of mannitol: An implication in clinical diagnostics, Analyt. Chim. Acta, 675(2), 165(2010); https://doi.org/10.1016/j.aca.2010.07.020.

K. Zhang, Y. Yu, S. Sun, K. Zhang. Facile synthesis L-cysteine capped CdS:Eu quantum dots and their Hg2+ sensitive properties, Applied Surface Science, 276, 333 (2013); https://doi.org/10.1016/j.apsusc.2013.03.093.

C. Zhao-Xia, H. Yang, Y. Zhang. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg (II) in aqueous solution, Analyt. Chim. Аcta, 559(2), 234 (2006); https://doi.org/10.1016/j.aca.2005.11.061.

J. Chen., Y. Zheng, Y. Gao et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution, Spectrochim. Acta Part A: Molecular Biomolecul. Spectroscopy, 69(3), 1044 (2008); https://doi.org/10.1016/j.saa.2007.06.021.

D.P.S. Negi, T.I. Chanu. Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine. Nanotechnology, 19, 465507 (2008); https://doi.org/10.1088/0957-4484/19/46/465503.

K. Dashtian, S. Hajati, M. Ghaedi. L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring, Biosensors and Bioelectronics, 165, 112346 (2020); https://doi.org/10.1016/j.bios.2020.112346.

X. Wei, F. Cheng, Y. Yao, X. Yi, B. Wei, H. Li, Y. Wu, J. He. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application, RSC Adv., 30(11), 18417 (2021); https://doi.org/10.1039/D1RA02600C.

J. Liu, D. Shan, T. Zhang, Y. Li, R. Wang, Dr. M. Liu. Ag2S/CdS-Heterostructured Nanorod Synthesis by L–Cysteine-Mediated Reverse Microemulsion Method, ChemistrySelect 4(35), 10219 (2019); https://doi.org/10.1002/slct.201902171.

X. Wang, B. Yu, Q. Wang, J. Cao, M. Wang, W. Yao. L-cysteine-protected ruthenium nanoclusters on CdS as efficient and reusable photocatalysts for hydrogen production, International Journal of Hydrogen Energy, 48(77), 30006 (2023); https://doi.org/10.1016/j.ijhydene.2023.04.199.

Mohammad Hasan Yousefi, A. A.Abdolhosseinzadeh, Hamid Reza Fallah, Ali Azam Khosravi. Growth and characterization of CdS and CdS:Ag luminescent quantum dots dispersed in solution, Modern Physics Letters B, 24(25) (2011); https://doi.org/10.1142/S0217984910024882.

Majid Masteri-Farahani, Kiana Khademabbasi, Niloofar Mollatayefeh, Raphael Schneider. L- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine, J of Nanostructures, 8(4), 325 (2018); https://doi.org/10.22052/JNS.2018.04.001.

A. Kumar, V. Chaudhary. Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids, Nanotechnology, 20, 095703 (2009); https://doi.org/10.1088/0957-4484/20/9/095703.

P. Thakur, S.S. Joshi, T. Mukherjee. Fluorescent behavior of cysteine-mediated Ag@CdS nanocolloids, Langmuir, 25(11), 6377 (2009); https://doi.org/10.1021/la8042507.

P. Thakur, S.S. Joshi, K.R. Patil. Investigations of CdS and Ag–CdS nanoparticles by X-ray photoelectron spectroscopy, Applied Surface Science, 257(5), 1390 (2010); https://doi.org/10.1016/j.apsusc.2010.08.035.

G.Hota, Shikha Jain and Kartic C. Khilar. Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemusions, Colloids and surfaces A: Physicochemical Engin. Aspects, 232(2-3), 119 (2004); https://doi.org/10.1016/j.colsurfa.2003.10.021.

P. Mandal, S.S. Talwar, S.S. Major, R.S. Srinivasa. Orange-red luminescence from Cu doped nanophosphor prepared using mixed Langmuir-Blodgett multilayers, J. Chem. Phys., 128(11), 114703 (2008); https://doi.org/10.1063/1.2888930.

J. Xiang, H. Cao, Q. Wu, et al. L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanospheres, Journal of Physical Chemistry C, 112(10), (2008); https://doi.org/10.1021/jp710597j.

R.L. Orimi, N. Shahtahmasedi, N. Tajabor, A. Kompany. The effect of solvent on the crystal structure and size distribution of cadmium sulfide nanocrystals, Physica E, 40, 2894 (2008); https://doi.org/10.1016/j.physe.2008.02.011.

Downloads

Published

2024-12-19

How to Cite

Krupko, O., Shcherbak, L., Khalavka, Y., & Pylypko, V. (2024). Effect of silver ions on the optical properties of colloidal solutions of CdS/L-Cysteine nanoparticles. Physics and Chemistry of Solid State, 25(4), 910–916. https://doi.org/10.15330/pcss.25.4.910-916

Issue

Section

Scientific articles (Chemistry)