Isothermal Decay Analysis of Thermoluminescence Peaks of Nano-α-Alumina
DOI:
https://doi.org/10.15330/pcss.25.4.689-693Keywords:
Activation energy, Nano α-alumina, Thermoluminescence, Isothermal decay method, GlowFitAbstract
This study investigates the thermoluminescence (TL) behavior of nano α-Al2O3 (40 nm) within the temperature range of 110 to 160°C to elucidate the kinetic mechanisms governing its TL response. The isothermal decay curves were analyzed to determine the order of kinetics and activation energies of the TL peaks. The ln(I) vs. time plot revealed a nonlinearity starting at 140°C, indicating that the TL peaks do not follow first-order kinetics in this temperature region. Subsequent analysis confirmed that the TL data align with second-order kinetics, with a kinetic-order parameter of b = 2.0 providing the best linear fit.
Further examination of the ln(slope) vs. 1/kT relationship revealed a composite structure in the TL response, characterized by three distinct linear sections. These sections correspond to activation energies of 0.6±0.12 eV, 1.07±0.25 eV, and 1.61±0.47 eV, respectively, suggesting the presence of three different centers contributing to the dosimetric peak. The findings underscore the complex nature of the TL response in nano α-Al2O3, highlighting the necessity of considering multiple kinetic components in the analysis of its TL properties. This study enhances our understanding of the thermoluminescent behavior of nano α-Al2O3 and provides a basis for further research into its applications in dosimetry
References
E. G. Yukihara, A. J. J. Bos, P. Bilski, and S. W. S. McKeever, The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls, Radiat. Meas., 158, 106846 (2022); https://doi.org/10.1016/j.radmeas.2022.106846.
Y. Espitia, R. Cogollo, A. Osorio, and O. D. Gutiérrez, Kinetic analysis of the main thermoluminescence glow peak in α-Al2O3, Radiat. Meas., 153, 106749 (2022); https://doi.org/10.1016/j.radmeas.2022.106749.
A. Duragkar et al., Versatility of thermoluminescence materials and radiation dosimetry – A review,” Luminescence, 34(7), 656 (2019); https://doi.org/10.1002/bio.3644.
S. Mammadov, M. Gurbanov, L. Ahmadzade, and A. Abishov, Thermoluminescence characteristics of gamma-irradiated nano-alumina, Radiat. Phys. Chem., 219, 111650 (2024); https://doi.org/10.1016/j.radphyschem.2024.111650.
S. Mammadov, M. Gurbanov, L. Ahmadzade, and A. Abishov, Thermoluminescence properties of nano-alumina with two different particle sizes, Phys. Chem. Solid State, 24(3), 584 (2023); https://doi.org/10.15330/pcss.24.3.584-588.
N. M. Trindade, M. G. Magalhães, M. Cavalcanti, and S. Paulo, “hermoluminescence of UV-irradiated α -Al 2 O 3 : C , Mg Department of Physics , Federal Institute of Education , Science and Technology of São, 2020.
I. V. Baklanova et al., Synthesis, spectroscopic and luminescence properties of Ga–doped γ–Al2O3, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 227, 117658 (2020); https://doi.org/10.1016/j.saa.2019.117658.
S.V Zvonarev, E.I. Frolov, K.Y. Chesnokov, N.O. Smirnov, V.A. Pankov, and V.Y. Churkin, Luminescent properties of alumina ceramics doped with manganese and magnesium, Opt. Mater. (Amst)., 91, 349 (2019); https://doi.org/10.1016/j.optmat.2019.03.019.
A.A. Mohammed, Z.T. Khodair, and A.A. Khadom, Preparation and investigation of the structural properties of α-Al2O3 nanoparticles using the sol-gel method, Chem. Data Collect., 29, 100531 (2020); https://doi.org/10.1016/j.cdc.2020.100531.
T. Paul and A. Mahamudul Hashan, Kinetic parameters of thermoluminescence based on isothermal decay curves, Int. J. Eng. Appl. Sci. Technol., 6(1), (2021); https://doi.org/10.33564/IJEAST.2021.v06i01.002.
V. Pagonis, G. Kitis, and C. Furetta, Numerical and practical exercises in thermoluminescence. 2006. https://doi.org/:10.1007/0-387-30090-2.
S. Mammadov, M. Gurbanov, and A. Ahadov, Exploring the thermoluminescent characteristic of nano-Al2O3, Eur. J. Chem., 15(2), 149 (2024); https://doi.org/10.5155/eurjchem.15.2.149.
M. Puchalska and P. Bilski, GlowFit-a new tool for thermoluminescence glow-curve deconvolution, Radiat. Meas., 41(6), 659 (2006); https://doi.org/10.1016/j.radmeas.2006.03.008.
M. Zahedifar, L. Eshraghi, and E. Sadeghi, Thermoluminescence kinetics analysis of α-Al 2O 3:C at different dose levels and populations of trapping states and a model for its dose response, Radiat. Meas., 47 (10), 957 (2012); https://doi.org/10.1016/j.radmeas.2012.07.018.
V. Correcher, J. Garcia-Guinea, and F. J. Valle-Fuentes, Recent results on the thermoluminescence properties of diaspore, Geophys. Res. Lett., 30 (18), 5 (2003); https://doi.org/10.1029/2003GL018028.
V. Correcher, J. Garcia-Guinea, R. Gonzalez-Martin, E. Crespo-Feo, and D. Jimenez-Cordero, Study of aluminium oxide from high-alumina refractory ceramics by thermoluminescence, Bull. Mater. Sci., 31 (6), 891 (2008); https://doi.org/10.1007/s12034-008-0142-x.
V. S. Kortov, A. Orozbek Uulu, and I. A. Vainshtein, Characteristic features of thermoluminescence kinetics in dosimetric aluminum oxide crystals, J. Appl. Spectrosc., 73(2), 206 (2006); https://doi.org/10.1007/s10812-006-0059-3.
N. Saharin, N. E. Ahmad, H. A. Tajuddin, and A. R. Tamuri, Thermoluminescence properties of aluminium oxide doped strontium, lithium and germanium prepared by combustion synthesis method, EPJ Web Conf., 156, (2017); https://doi.org/10.1051/epjconf/201715600001.
N. Saharin, H. Wagiran, and A. R. Tamuri, Thermoluminescence Characteristics of Aluminium Oxide Doped Carbon Exposed to Cobalt-60 Gamma Radiation, Adv. Mater. Res., 1107, 553 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1107.553.
M. A. Jowhari, S. A. Farha Al-Said, A. Abuhoza, and H. Donya, Dosimetric studies of pure and Ag-doped alumina as nanodosimeter for high gamma radiation doses, Mater. Today Proc., 65, 2615 (2022); https://doi.org/10.1016/J.MATPR.2022.04.879.
V. S. Kortov, S. V. Zvonarev, and V. A. Pustovarov, Photoluminescence dose dependences of F and F+-centers in TLD-500 detectors, Radiat. Meas., 106, 52 (2017); https://doi.org/10.1016/j.radmeas.2017.01.003.
V. Pagonis, R. Chen, and J. L. Lawless, A quantitative kinetic model for Al2O3:C: TL response to ionizing radiation, Radiat. Meas., 42(2), 198 (2007); https://doi.org/10.1016/j.radmeas.2006.07.006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Ahadov, Sahib Mammadov, Muslim Gurbanov, Aqshin Abishov, Aybeniz Ahadova
This work is licensed under a Creative Commons Attribution 3.0 Unported License.