Conditions for pulsed gas-discharge synthesis of thin tungsten oxide films from a plasma mixture of air with tungsten vapors
DOI:
https://doi.org/10.15330/pcss.25.4.684-688Keywords:
overvoltage nanosecond discharge, tungsten, air, thin films, radiation spectrum, plasmaAbstract
Characteristics of high-voltage nanosecond discharge in gas-vapor mixtures "Air – W" at air pressures p = 101.13; 13.3 kPa are provided. The discharge was ignited between tungsten electrodes. Formation of tungsten oxide clusters in the plasma occurred during the introduction of tungsten vapors into the discharge gap via an electron mechanism, creating conditions for the synthesis of thin tungsten oxide (WO3) films deposited on a glass substrate.
The optical properties of the discharge from the central region of a 2 mm-wide gap were investigated. The main components responsible for excitation in the plasma of a tungsten-based vapor-gas mixture with air were identified. Examination of the Raman spectra of laser-scattered radiation by the experimentally synthesized thin films revealed them to be island-like films of tungsten oxide (WO3).
References
O.K. Shuaibov, A.O. Malinina, Overstressed Nanosecond Discharge in the Gases at Atmospheric Pressure and Its Application for the Synthesis of Nanostructures Based on Transition Metals, Progress in Physics of Metals, 22(3), 382(2021); https://doi.org/10.15407/ufm.22.03.382.
M.I. Vatrala, O.K. Shuaibov, O.Y. Mynya, R.V. Hrytsak, Z.T. Homoki 30th Anniversary Conference of the Institute of Electronic Physics of the National Academy of Sciences of Ukraine (Uzhhorod, Ukraine, 2022), p. 128.
G.A. Mesyats, Ecton – Electron Avalanche from metal, Phys.-Usp., 38(6), 567 (1995); https://doi.org/10.1070/pu1995v038n06abeh000089.
V.F. Tarasenko, Runaway electrons preionized diffuse discharge (New York, Nova Science Publishers Inc., 2014).
T.E. Itina, A.Voloshko, Nanoparticle formation by laser ablation in air and by spark disharge at atmospheric pressure, Appl. Phys. B, 113(3), 473(2013); https://doi.org/10.5772/61303.
Y. Shi, Y. Zang, Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties, Chemical Engineering Journal, 335, 942 (2019); https://doi.org/10.1016/j.cej.2018.08.163.
Yu.O. Adamchuk, S.V. Chushchak, L.Z. Boguslavskii, A.V. Sinchuk The Regularities of Titanium and Tungsten Carbide Formation from Products of Electric Explosion Destruction of Conductors, Surface Engineering and Applied Electrochemistry, 59(3), 281(2023); https://doi.org/10.3103/S1068375523030043.
S.M. Karadeniz, Novel Synthesis of Good Electrochromic Performance WO3 Nanoplates Grown on Seeded FTO, European Journal of Science and Technology, 27, 718(2021); https://doi.org/10.31590/ejosat.
Y.Zhen, B. Petter Jelle, T. Gao, Electrochromic properties of WO3 thin films: The role of film thickness, Analytical Science Advances, 1, 124(2020); https://doi.org/10.1002/ansa.202000072.
R.J. Sáenz-Hernández, G.M. Herrera-Pérez, J.S. Uribe-Chavira, M. C. Grijalva-Castillo, J.T. Elizalde-Galindo, J. A. Matutes-Aquino, Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films, Coatings, 12(11), 1727(2022); https://doi.org/10.3390/coatings12111727.
R. Shuker, Y. Binur, A. Szoke, Studies of afterglows in noble-gas mixtures. A model for energy transver in He/Xe, Phys. Rev.A., 12(2), 515(1975); https://doi.org/10.1103/PhysRevA.12.515.
A. R. Striganov, Tables of spectral lines of neutral and ionized atoms (New York: Springer New York: 1968).
NIST Atomic Spectra Database Lines Form https:// physics.nist.gov/ PhysRefData/ASD/lines_form.html .
D.Z. Pai, D.L. Lacoste, C.O. Laux, Nanosecond repetitively pulsed discharge in air at atmospheric pressure – the sparc regime, Plasma Souces Sci. Technol., 19, 065015(2010); https://doi.org/10.1088/0963-0252/19/6/065015.
R.V. Hrytsak, O.Y. Minya, O.K. Shuaibov, Z.T. Homoki, M.I. Vatrala, Proceedings of the 1st International Scientific and Practical Internet Conference “Towards a Holistic Understanding: Interdisciplinary Approaches to Overcoming Global Challenges and Promoting Innovative Solutions” (Dnipro, Ukraine, 2024), p. 101.
O.K. Shuaibov, O.Y. Minya, Z.T. Homoki, I.V. Shevera, V.V. Danylo, Method for Synthesizing Zinc Oxide Nanostructures with Automatic Ultraviolet Radiation Assistance, Patent 124311, Ukraine, MPK (2021.01): C01G 9/02, No. a 2019 02824; Publ. 25.08.2021, Bulletin No.34, 6 p.
T. Sarmah, N. Aomoa, G. Bhattacharjee, S. Sarma, B. Bora, D.N. Srivastava, H. Bhuyan, M. Kakati, G. De Temmerman, Plasma expansion synthesis of tungsten nanopowder, Journal of Alloys and Compounds, 725, 606(2017); https://doi.org/10.1016/j.jallcom.2017.07.207.
F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge, Nanotechnology, 22(33), 335702 (2011); https://doi.org/10.1088/0957-4484/22/33/335702.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R.V. Hrytsak, O.K. Shuaibov, O.Y. Minya, A.O. Malinina, I.V. Shevera, Yu.Yu. Bilak, Z.T. Homoki
This work is licensed under a Creative Commons Attribution 3.0 Unported License.