PHYSICS AND CHEMISTRY OF SOLID STATE

V. 25, No.4 (2024) pp. 677-683

Section: Chemistry

DOI: 10.15330/pcss.25.4.677-683

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 25, № 4 (2024) С. 677-683

Хімічні науки

UDC: 544.022.242

ISSN 1729-4428 (Print) ISSN 2309-8589 (Online)

Н.М. Блашко¹, О.В. Марчук¹, А.О. Федорчук² Кристалічна структура халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – La, Ce, Pr та Tb)

¹Волинський національний університет імені Лесі Українки, Луцьк, Україна, <u>blashko.nazarii@vnu.edu.ua</u> ²Львівський національний університет ветеринарної медицини та біотехнологій імені С.З. Ґжицького, Львів, Україна, <u>ft@ua.fm</u>

У роботі представлено результати дослідження кристалічної структури халькогенідів складу R₃Fe_{0.1}Ga_{1.6}S₇ (R = La, Ce, Pr та Tb) як перспективних матеріалів, що прогнозовано володіють цікавими нелінійно-оптичними та електричними властивостями. Синтез зразків стехіометричного складу, загальною масою один грам кожен, отримано сплавлянням простих речовин у вакуумованих кварцевих контейнерах до залишкового тиску 10⁻² Па за максимальної температури синтезу 1100 °С. Кристалічна структура халькогенідів La₃Fe_{0.1}Ga_{1.6}S₇ (A) {a = 10.1884(6) Å, c = 6.0515(4) Å, $R_I = 0.0940$, $R_P = 0.2503$ }, Ce₃Fe_{0.1}Ga_{1.6}S₇ (B) {a = 10.0864(4) Å, c = 6.0440(3) Å, $R_I = 0.0695$, $R_P = 0.1935$ }, $Pr_3Fe_{0.1}Ga_{1.6}S_7$ (C) {a = 9.9853(3) Å, c = 6.0648(2) Å, $R_I = 0.0730$, $R_P = 0.1777$ Ta Tb₃Fe_{0.1}Ga_{1.6}S₇ (D) {a = 9.6692(7) Å, c = 6.0799(5) Å, $R_I = 0.0909$, *R*_P = 0.2742} вивчена рентгенівським методом порошку. Встановлено приналежність структури синтезованих фаз до гексагональної сингонії (структурний тип La3CuSiS7; просторова група Р63; символ Пірсона hP24,173). Складні халькогеніди (А), (В), (С) і (D) синтезовані на основі сульфідів R₃Ga_{1.67}S₇ (R = La, Ce, Pr та Tb) шляхом заміщення атомів галію в правильній системі точок (ПСТ) 2a атомами статистичних сумішей M1 {0.57(2) Ga + 0.10(2) Fe}, M2 {0.56(1) Ga + 0.10(2) Fe}, M3 {0.61(8) Ga + 0.09(1) Fe} i M4 {0.57(2) Ga + 0.10(2) Fe} відповідно. У структурі одержаних халькогенідів атоми рідкісноземельних елементів локалізовані в ПСТ 6с і разом з атомами сульфуру формують тригональні призми, що мають один додатковий атом [R 3S13S21S3]. Тригональні призми з одним додатковим атомом утворюють "блоки" 3[R 7S]. У цих "блоках" тригональні призми між собою з'єднані ребрами. Атоми статистичних сумішей М1, М2, М3 і М4, що локалізовані в ПСТ 2a, формують октаедри [М1 6S2], [М2 6S2], [M3 6S₂] і [M4 6S₂] відповідно. Ці октаедри між собою з'єднані гранями та в напрямку осі с утворюють колони. В ПСТ 2b атоми Ga оточені чотирма атомами сульфуру [Ga 3S11S3].

Ключові слова: кристалічна структура, рідкісноземельні елементи, хальогеніди, ренттенівський метод порошку, EDAX аналіз.

Подано до редакції 12.03.2024; прийнято до друку 11.10. 2024.

Вступ

Досить перспективним напрямком розвитку сучасної хімічної технології та кристалохімії є дослідження халькогенідів у структурі яких наявні елементи родини лантаноїдів [1, 2]. Такі сполуки володіють цікавими оптичними [3], магнітними [4], термічними [5], електричними [6, 7] та іншими властивостями. Наявність у комірці атомів перехідних металів створює відповідну кристалохімічну впорядкованість, у якій лантаноїди займають внутрішньо-об'ємні ПСТ [8, 9]. Такі халькогеніди кристалізуються в нецентросиметричній просторовій групі *P*6₃ гексагональної сингонії та можуть володіти нелінійно- оптичними властивостями [10-14]. У роботі представлено результати дослідження кристалічної структури чотирьох халькогенідів La₃Fe_{0.1}Ga_{1.6}S₇, Ce₃Fe_{0.1}Ga_{1.6}S₇, Pr₃Fe_{0.1}Ga_{1.6}S₇ та Tb₃Fe_{0.1}Ga_{1.6}S₇ методом Рітвельда. Одним із завдань дослідження є отримання складних РЗМ-вмісних халькогенідів з метою пошуку матеріалів з прогнозованими фізичними властивостями.

I. Експериментальна частина

Синтез чотирьох сплавів, загальною масою один грам кожен, для дослідження кристалічної структури халькогенідів $R_3Fe_{0.1}Ga_{1.6}S_7$ (R = La, Ce, Pr та Tb) проводили з простих речовин із вмістом основного компонента не менше 99.99 мас. % в муфельній електричній печі з програмним управлінням технологічними процесами МП-30. вакуумованих (10⁻² Па) Синтез у кварцевих контейнерах здійснювали згідно технологічного режиму: нагрів до температури 700 °С зі швидкістю 40 °С/год; витримка за температури 700 °С (10 годин); нагрів до температури 1100 °С зі швидкістю 12 °С/год; витримка за температури 1100 °С (2 години); охолодження до температури 500 °С зі швидкістю 6 °С/год; гомогенізуючий відпал за температури 500 °С (240 годин); гартування синтезованих зразків у воду за кімнатної температури без розгерметизації контейнерів.

Розрахунок основних параметрів структури синтезованих фаз проводили за дифрактограмами, що були одержані в межах $2\Theta = 10 - 100^{\circ}$ на рентгенівській установці ДРОН 4-13 з параметрами зйомки: CuK_α-випромінювання; крок сканування – 0,02°, експозиція у кожній точці – 10 с. Розрахунок кристалічної структури проведено методом Рітвельда (пакет програм WinCSD) [15]. Візуалізацію кристалічної структури виконано за допомогою програми VESTA 3.5.7 [16].

II. Результати та їх обговорення

Сульфіди стехіометричного складу $R_3Fe_{0.1}Ga_{1.6}S_7$ (R = La, Ce, Pr та Tb) синтезували на основі тернарних сполук $R_3Ga_{1.67}S_7$ (R = La, Ce, Pr та Tb) шляхом часткового заміщення атомів галію в ПСТ 2*a* атомами двовалентного феруму. Кристалографічні характеристики вихідних халькогенідів представлено в таблиці 1.

		Т	аблиця 1.		
Кристалографічні характеристики сполук R ₃ Ga _{1.67} S ₇					
(R - La, Ce, Pr, Tb)					
	Просто	Періоли			

Сполука	Просто рова	Періоди комірки, Å			Літерат
	група	а	b	с	ура
La ₃ Ga _{1.67} S ₇	<i>P</i> 6 ₃	10.15		6.08	[17, 18]
La ₃ Ga _{1.67} S ₇	$P6_{3}$	10.17		6.082	[19]
$Ce_{3}Ga_{1.67}S_{7}$	<i>P</i> 6 ₃	10.03		6.08	[17, 18]
$Pr_{3}Ga_{1.67}S_{7}$	<i>P</i> 6 ₃	9.94		6.08	[18]
Tb ₃ Ga _{1.67} S ₇	$P6_3$	9.67	_	6.08	[18, 20]

Кристалічна структура сульфідів вивчалася рентґенівським методом порошку. Аналіз індексів Міллєра *hkl* рефлексів та їх інтенсивностей вказує на приналежність структур синтезованих халькогенідів до структурного типу La₃CuSiS₇ [21]. У таблицях 2 і 3 наведено умови проведеного експерименту та кристалографічні характеристики структури синтезованих халькогенідів.

Спостережувані, розраховані та різницеві між ними дифрактограми халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – La, Ce, Pr та Tb) представлено на рисунку 1.

Уточнення координат та ізотропних теплових параметрів атомів у структурах синтезованих халькогенідів (таблиця 4) призвело до відносно задовільних значень *R*-факторів.

Елементарну комірку та координаційні поліедри [R 7S], [M 6S] і [Ga 4S] у структурі синтезованих сульфідів зображено на рисунку 2.

Кристалічна структура синтезованих сульфідів належить до гексагональної сингонії та сформована тригональними призмами [R 3S₁3S₂1S₃] (R – La, Ce, Pr або Tb). Атоми P3M, заселяючи ПСТ 6с, координують по сім атомів сульфуру. Тригональні призми з одним додатковим атомом утворюють "блоки" 3 [R 7S]. У цих "блоках" тригональні призми між собою з'єднані ребрами.

Для атомів статистичних сумішей М1–М4, що займають ПСТ 2a, характерною є октаедрична координація (КЧ = 6). Октаедри [М 6S₂] мають спільні грані та в напрямку осі *с* утворюють колони.

Введення у структуру сульфідів La₃Ga_{1.67}S₇ та Ce₃Ga_{1.67}S₇ атомів двовалентного металу сприяє тому, що октаедри [M 6S₂] стають більш симетричними в порівнянні з октаедрами [Ga 6S₂]: у структурі La₃Ga_{1.67}S₇ χ ([Ga 6S₂] = 0.03891), у структурі La₃Fe_{0.1}Ga_{1.6}S₇ χ ([M 6S₂] = 0.02398); у структурі Ce₃Ga_{1.67}S₇ χ ([Ga 6S₂] = 0.03955), у структурі Ce₃Fe_{0.1}Ga_{1.6}S₇ χ ([M 6S₂] = 0.02379).

Введення у структуру сульфідів $Pr_3Ga_{1.67}S_7$ та $Tb_3Ga_{1.67}S_7$ атомів двовалентного металу сприяє тому, що октаедри [M 6S₂] стають менш симетричними в порівнянні з октаедрами [Ga 6S₂]: у структурі $Pr_3Ga_{1.67}S_7$ $\chi([Ga 6S_2] = 0.00845)$, у структурі $Pr_3Fe_{0.1}Ga_{1.6}S_7$ $\chi([M 6S_2] = 0.04118)$; у структурі $Tb_3Ga_{1.67}S_7$ $\chi([Ga 6S_2] = 0.00876)$, у структурі $Tb_3Fe_{0.1}Ga_{1.6}S_7$ $\chi([M 6S_2] = 0.05194)$.

Для атомів галію, що займають ПСТ 2*b*, характерною є тетраедрична координація (КЧ = 4). Тетраедри [Ga 4S] найбільш симетричні у структурі $Pr_3Fe_{0.1}Ga_{1.6}S_7$ ($\chi = 0.00759$), найменш симетричні у структурі La₃Fe_{0.1}Ga_{1.6}S₇ ($\chi = 0.03405$).

Вище зазначені закономірності у симетрії поліедрів, дозволяють стверджувати, що введенням у структуру РЗМ-вмісних халькогенідів атомів хімічних можна елементів різної природи, корегувати геометричні параметри поліедрів. А отже, синтезувати матеріали 3 наперед заданими кристалічною структурою фізичними та властивостями.

Розраховані параметри поліедрів у структурах халькогенідів $R_3Fe_{0.1}Ga_{1.6}S_7$ (R – La, Ce, Pr, Tb) представлено у таблицях 5 і 6.

Використовуючи пакет програм *WinCSD* [15], розраховано міжатомні віддалі у структурі синтезованих халькогенідів.

Таблиця 2.

T 7 U			• ••			DE		DI	C)
V МОВИ ЗИОМКИ ТЯ	negyIILTati	і уточнення к	ристаличног	CTNVKTVD	и халькогенілів		121687 ($\mathbf{K} = \mathbf{L}$	ale
5 MODII SHOMAII 14	pesymbian	y io momini k	phonum mon	erpyniypi	п лалыкот енци	131 00.1	Sullos / (IC 10	a, cc)

	i wii iiioi oipjiiijpii iiwibitoi oiiidib		
Параметри	La ₃ Fe _{0.1} Ga _{1.6} S ₇	Ce ₃ Fe _{0.1} Ga _{1.6} S ₇	
Просторова група	<i>P</i> 6 ₃ (173)	<i>P</i> 6 ₃ (173)	
<i>a</i> , (Å)	10.1884(6)	10.0864(4)	
<i>c</i> , (Å)	6.0515(4)	6.0440(3)	
Об'єм комірки (Å ³)	544.0(1)	532.51(6)	
Число атомів в комірці	23.3	23.3	
Розрахована густина (г/см ³)	4.6130(9)	4.7351(6)	
Абсорбційний коефіцієнт (1/см)	1044.88	1104.07	
Випромінювання та довжина хвилі (Å)	Cu 1.54185		
Дифрактометр	Дрон 4-13		
Спосіб обрахунку	Повнопрофільний		
Програма для обрахунку	WinCSD		
Кількість атомних позицій	6		
Кількість вільних параметрів	19		
2Θ τα sin Θ/λ (макс.)	100.00; 0.496	100.05; 0.497	
R _I	0.0940	0.0695	
R_P	0.2503	0.1935	
Фактор шкали	0.25030(5)	0.5262(3)	

Таблиця 3.

Умови зйомки та результати уточнення кристалічної структури халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – Pr, Tb)

Параметри	Pr3Fe0.1Ga1.6S7	Tb3Fe0.1Ga1.6S7		
Просторова група	<i>P</i> 6 ₃ (173)	<i>P</i> 6 ₃ (173)		
a, (Å)	9.9853(3)	9.6692(7)		
<i>c</i> , (Å)	6.0648(2)	6.0799(5)		
Об'єм комірки (Å ³)	523.68(4)	492.3(1)		
Число атомів в комірці	23.3	23.3		
Розрахована густина (г/см ³)	4.8462(4)	5.505(1)		
Абсорбційний коефіцієнт (1/см)	1158.18	1174.46		
Випромінювання та довжина хвилі (Å)	Cu 1.54185			
Дифрактометр	Дрон 4-13			
Спосіб обрахунку	Повнопрофільний			
Програма для обрахунку	WinCSD			
Кількість атомних позицій	6			
Кількість вільних параметрів	19			
2Θ та sin Θ/λ (макс.)	100.02; 0.497	100.00; 0.497		
R_I	0.0730	0.0909		
R _P	0.1777	0.2742		
Фактор шкали	0.17824(0)	0.22804(2)		

Рис. 1. Спостережувані, розраховані та різницеві між ними дифрактограми халькогенідів: La₃Fe_{0.1}Ga_{1.6}S₇ (A), Ce₃Fe_{0.1}Ga_{1.6}S₇ (B), Pr₃Fe_{0.1}Ga_{1.6}S₇ (C) та Tb₃Fe_{0.1}Ga_{1.6}S₇ (D).

Таблиця 4.

Координати та ізотропні параметри теплового коливання атомів у структурі халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇,

(R – La, Ce, Pr та Tb).					
		La	3Fe0.1Ga1.6S7	1	1
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \times 10^2 (\text{\AA}^2)$
La	6 <i>c</i>	0.3746(3)	0.2324(3)	0.2224(11)	1.12(4)
Ga	2b	1/3	2/3	0.1399(15)	1.4(3)
M1	2 <i>a</i>	0	0	0.00000	1.5(3)
S1	6 <i>c</i>	0.507(2)	0.0985(12)	0.486(2)	0.9(3)
S2	6 <i>c</i>	0.0888(11)	0.2303(11)	0.267(2)	0.7(3)
S3	2b	1/3	2/3	0.483(3)	1.1(5)
M1 - 0.57(2) G	a + 0.10(2) Fe				
		Ce	3Fe0.1Ga1.6S7		
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \times 10^2 (\text{\AA}^2)$
Ce	6 <i>c</i>	0.3743(2)	0.2328(2)	0.2286(8)	0.62(4)
Ga	2b	1/3	2/3	0.1502(11)	0.3(2)
M2	2 <i>a</i>	0	0	0.00000	0.9(3)
S1	6 <i>c</i>	0.0912(9)	0.2435(9)	0.269(2)	0.3(2)
S2	6 <i>c</i>	0.1519(13)	0.0925(11)	0.4982(15)	0.7(3)
S3	2b	1/3	2/3	0.518(3)	0.3(4)
M2 - 0.56(1) G	a + 0.10(2) Fe				
		Pr	3Fe0.1Ga1.6S7		
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \times 10^2 (\text{\AA}^2)$
Pr	6 <i>c</i>	0.3742(2)	0.1453(2)	0.2345(5)	1.04(5)
Ga	2b	1/3	2/3	0.1568(6)	0.65(13)
M3	2a	0	0	0.018(2)	1.7(2)
S1	6 <i>c</i>	0.1008(7)	0.5218(8)	0.0074(9)	0.9(3)
S2	6 <i>c</i>	0.1470(7)	0.2394(6)	0.2969(9)	0.8(3)
S3	2b	1/3	2/3	0.5167(15)	0.6(3)
M3 - 0.61(8) Ga + 0.09(1) Fe					
Tb3Fe0.1Ga1.6S7					
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \times 10^2 (\text{\AA}^2)$
Tb	6 <i>c</i>	0.3779(3)	0.2244(11)	0.2142(11)	1.06(6)
Ga	2 <i>b</i>	1/3	2/3	0.1475(15)	0.7(3)
M4	2a	0	0	0.001(3)	1.3(4)
S1	6 <i>c</i>	0.491(2)	0.074(2)	0.488(2)	1.4(3)
S2	6 <i>c</i>	0.0944(14)	0.2620(13)	0.292(2)	1.0(4)
S3	2b	1/3	2/3	0.513(4)	0.6(5)
M4 - 0.57(2) Ga + 0.10(2) Fe					

Рис. 2. Елементарна комірка та координаційне оточення поліедрів [R 7S], [M 6S] і [Ga 4S] у структурі R₃Fe_{0.1}Ga_{1.6}S₇(R – La, Ce, Pr та Tb).

Таблиця 5.

Параметри поліедрів La(Ce) /S , $ M 6S $ та Ga 4S у структурі халькогенідів R ₃ Fe _{0.1} Ga ₁ .

Параметри	La3Fe0.1Ga1.6S7	Ce ₃ Fe _{0.1} Ga _{1.6} S ₇	
	[La(Ce) 3S ₁ 3S ₂ 1S ₃]		
$\delta(La(Ce) - S), Å$	2.834(19) - 3.040(13)	2.880(19) - 3.012(13)	
$\delta(La(Ce) - S)_{cep}, Å$	2.9491	2.9265	
Індекс дисторсії (χ)	0.01628	0.01153	
V, Å ³	35.5051	34.7442	
$KY / KY_{e\phi}$	7 / 6.87	7 / 6.95	
	[M 6	5S2]	
$\delta(M-S), Å$	2.486(11) - 2.609(11)	2.566(10) - 2.691(10)	
$\delta(M-S)_{cep}, Å$	2.5475	2.6288	
Індекс дисторсії (χ)	0.02398	0.02379	
V, Å ³	21.9801	24.1801	
$KY / KY_{e\phi}$	6 / 5.87	6 / 5.87	
	[Ga 3S ₁ 1S ₃]		
δ(Ga – S1), Å	2.11(3)	2.22(2)	
δ(Ga – S3), Å	2.318(11)	2.326(10)	
$\delta(Ga - S)_{cep}, Å$	2.2663	2.3009	
\angle S1 – Ga – S3, (°)	113.7(4)	113.3(4)	
\angle S1 – Ga – S1, (°)	104.9(5)	105.4(4)	
Індекс дисторсії (χ)	0.03405	0.01668	
V, Å ³	5.9359	6.2173	
KY / KY _{e\$}	4 / 3.66	4 / 3.94	

Таблиця 6.

Параметри поліедрів [Pr(Tb) 7S], [M 6S] та [Ga 4S] у структурі халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – Pr, Tb)

Параметри	Pr ₃ Fe _{0.1} Ga _{1.6} S ₇	Tb ₃ Fe _{0.1} Ga _{1.6} S ₇	
	$[Pr(Tb) 3S_13S_21S_3]$		
$\delta(\Pr(Tb) - S), Å$	2.829(8) - 3.046(6)	2.731(12) - 2.98(3)	
$\delta(\Pr(Tb) - S)_{cep}, Å$	2.9068	2.8180	
Індекс дисторсії (χ)	0.01369	0.03186	
V, Å ³	34.2436	31.5331	
$KY / KY_{e\phi}$	7 / 6.89	7 / 6.68	
	[M 6	[S ₂]	
$\delta(M-S), Å$	2.478(9) - 2.690(10)	2.56(2) - 2.84(2)	
$\delta(M-S)_{cep}, Å$	2.5840	2.7007	
Індекс дисторсії (χ)	0.04118	0.05194	
V, Å ³	22.8827	26.0173	
$KY / KY_{e\phi}$	6 / 5.58	6 / 5.32	
	[Ga 3S ₁ 1S ₃]		
$\delta(Ga - S1), Å$	2.179(13)	2.23(3)	
$\delta(Ga - S3), Å$	2.224(7)	2.426(16)	
$\delta(Ga - S)_{cep}, Å$	2.2126	2.3750	
∠ S1 – Ga – S3, (°)	114.03(17)	113.5(4)	
\angle S1 – Ga – S1, (°)	104.6(2)	105.5(5)	
Індекс дисторсії (χ)	0.00759	0.03154	
V, Å ³	5.5103	6.8358	
KY / KY _{eq}	4 / 3.99	4 / 3.72	

Із зменшенням величини $r_{R^{3+}}$ спостерігаються певні закономірності.

У структурі La₃Fe_{0.1}Ga_{1.6}S₇ (рис. 3) величина міжатомної віддалі δ (La – S)₁ є середнім значенням між довжиною зв'язку δ (La – S), що розрахована як сума ковалентних радіусів δ (La – S)_{ков.} та іонних радіусів δ (La – S)_{ков.} та іонних

Величини довжин зв'язків $\delta(La - S)_2$, $\delta(La - S)_3$ і $\delta(La - S)_4 \in$ співрозмірними із величиною $\delta(La - S)_{ioh.}$.

Величини $\delta(La - S)_5$, $\delta(La - S)_6$ та $\delta(La - S)_7$ є більшими за довжину зв'язку $\delta(La - S)$, що розрахована як сума іонних радіусів $\delta(La - S)_{ioh.}$. У структурі Ce₃Fe_{0.1}Ga_{1.6}S₇ величини довжин зв'язків $\delta(Ce - S)_{1-5}$ співрозмірні із величиною $\delta(Ce - S)_{ioh.}$ Величини $\delta(Ce - S)_6$ і $\delta(Ce - S)_7$ є більшими за довжину зв'язку, що розрахована як сума іонних радіусів. У структурі Pr₃Fe_{0.1}Ga_{1.6}S₇ спостерігається значне зростання віддалі $\delta(Pr - S)_7$ в порівнянні із

 $\delta(Pr-S)_{\rm ioh.}$ Для $Tb_{3}Fe_{0.1}Ga_{1.6}S_{7}$ експериментально визначені величини довжин зв'язків $\delta(Tb-S)_{1.5}$ знаходяться в діапазоні між довжиною зв'язку $\delta(Tb-S)$, що розрахована як сума ковалентних радіусів $\delta(Tb-S)_{\rm KOB.}$ та іонних радіусів $\delta(Tb-S)_{\rm ioh.}$ Величини $\delta(Tb-S)_{6}$ і $\delta(Tb-S)_{7}$ є більшими за довжину зв'язку, що розрахована як сума іонних радіусів.

Рис. 3. Міжатомні віддалі та R - S у структурі $R_3Fe_{0.1}Ga_{1.6}S_7(R - La, Ce, Pr та Tb).$

Для cepiï халькогенідів $R_3Fe_{0.1}Ga_{1.6}S_7$ iз зменшенням радіуса іона R³⁺ параметр елементарної комірки а зменшується від 10.1884(6) (для La₃Fe_{0.1}Ga_{1.6}S₇) до 9.6692(7) Å (для Tb₃Fe_{0.1}Ga_{1.6}S₇); об'єм елементарної комірки зменшується від 544.0(1) (для $La_{3}Fe_{0.1}Ga_{1.6}S_{7}$) до 492.3(1) Å³ (для Tb₃Fe_{0.1}Ga_{1.6}S₇). Така зміна параметрів елементарної комірки корелює із зменшенням об'ємів тригональних призм [R 7S] від 35.5051 Å³ (y структурі $La_{3}Fe_{0.1}Ga_{1.6}S_{7}$) до 31.5331 Å³ структурі (y $Tb_3Fe_{0.1}Ga_{1.6}S_7$).

Елементний склад халькогеніду $Pr_3Fe_{0.1}Ga_{1.6}S_7$ було додатково оцінено за допомогою EDAX аналізу. Розраховані ат. % елементів Pr: 25.64, Fe: 0.86, Ga: 13.68, S: 59.83; знайдені ат. % Pr: 26.74 ± 4.70, Fe: 1.2 ± 0.17, Ga: 14.12 ± 1.34, S: 57.94 ± 3.12. Результати представлені на рисунку 4. Видно, що результати розрахунку структури та елементний аналіз добре узгоджуються між собою.

Рис. 4. EDAX спектр халькогеніду Pr₃Fe_{0.1}Ga_{1.6}S₇.

Висновки

Вперше синтезовано, рентгенівським методом порошку вивчено та проаналізовано кристалічну тетрарних структуру чотирьох халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – La, Ce, Pr та Tb). На основі аналізу масиву експериментально отриманих результатів встановлено, що ці фази кристалізуються у гексагональній сингонії (СТ La₃CuSiS₇; ПГ Р6₃; СП *hP*24) з параметрами елементарної комірки: a = 10.1884(6) Å, c = 6.0515(4) Å ta V = 544.0(1) Å³ (для La₃Fe_{0.1}Ga_{1.6}S₇); *a* = 10.0864(4) Å, *c* = 6.0440(3) Å $V = 532.51(6) \text{ Å}^3$ та (для $Ce_{3}Fe_{0.1}Ga_{1.6}S_{7}$; a = 9.9853(3) Å, c = 6.0648(2) Å ta V = 523.68(4) Å³ (для Pr₃Fe_{0.1}Ga_{1.6}S₇); *a* = 9.6692(7) Å, *c* = 6.0799(5) Å та V = 492.3(1) Å³ (для Tb₃Fe_{0.1}Ga_{1.6}S₇).

З огляду на те, що для синтезованих халькогенідів характерною є нецетросиметрична структура, вони можуть бути використані як матеріали для дослідження їх нелінійно-оптичниних та інших характеристик.

Блашко Н. – старший лаборант кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки;

Марчук О. – кандидат хімічних наук, доцент, доцент кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки;

Федорчук А. – доктор хімічних наук, професор, професор кафедри біологічної і загальної хімії, Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького.

[1] Jean-Claude Bunzli, V.K. Pecharsky, *Handbook on the Physics and Chemistry of Rare Earths*, Elsevier Science Publishers B.V., 50, 480 (2016).

^[2] V.A. Starodub, *Ternary and quaternary chalcogenides of group IB elements*, Russ. Chem. Rev. 68, 10 (1999); https://doi.org/10.1070/RC1999v068n10ABEH000480.

^[3] B.J. Eggleton, B. Luther-Davies, K. Richardson, *Chalcogenide photonics. Nat. Photon.*, 5, 141 (2011); https://doi.org/10.1038/nphoton.2011.309.

^[4] N.A. Spaldin, *Magnetic Materials: Fundamentals and Applications*. Cambridge University Press. Second edition, (2010); <u>https://doi.org/10.1017/CBO9780511781599</u>.

^[5] T.M. Tritt, *Thermal Conductivity: Theory, Properties, and Applications*. Springer Science & Business Media., 105 (2005); <u>https://doi.org/10.1007/b136496</u>.

^[6] L. Fu, C.L. Kane, E.J. Mele, *Topological insulators in three dimensions*, Phys. Rev. Lett., 98 (2007); https://doi.org/10.1103/PhysRevLett.98.106803.

[7] Y. Shi, C. Sturm, H. Kleinke, *Chalcogenides as thermoelectric materials*, J. Solid State Chem., 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.

[8] L.D. Gulay, M. Daszkiewicz, I.P. Ruda, O.V. Marchuk, *La*₂*Pb*(*SiS*₄)₂, Acta Cryst. C., 66, 3 (2010); <u>https://doi.org/10.1107/S0108270110000247</u>.

[9] N.M. Blashko, O.V. Smitiukh, O.V. Marchuk, The crystal structure of $La_3Pb_{0.1}Ga_{1.6}S_7$ and $La_3Pb_{0.1}Ga_{1.6}S_7$ compounds, Physics and chemistry of solid state, 23(1) (2022); <u>https://doi.org/10.15330/pcss.23.1.96-100</u>.

[10] A.K. Iyer, B.W. Rudyk, X. Lin, H. Singh, A.Z. Sharma, C.R. Wiebe, A. Mar, *Noncentrosymmetric rare-earth copper gallium chalcogenides* $RE_3CuGaCh_7$ (RE = La - Nd; Ch = S, Se): An unexpected combination. J. Solid State Chem., 229, 150 (2015); <u>https://doi.org/10.1016/j.jssc.2015.05.016</u>.

[11] A.K. Iyer, W. Yin, B.W. Rudyk, X. Lin, T. Nilges, A. Mar, *Metal ion displacements in noncentrosymmetric chalcogenides* $La_3Ga_{1.67}S_7$, $La_3Ag_{0.6}GaCh_7$ (Ch = S, Se) and La_3MGaSe_7 (M = Zn, Cd). J. Solid State Chem., 243, 221 (2016); <u>https://doi.org/10.1016/j.jssc.2016.08.031</u>.

[12] Y.F. Shi, Y.K. Chen, M.K. Chen, L.M. Wu, H. Lin, L.J. Zhou, L. Chen, *Strongest second harmonic generation* in the polar R_3MTQ_7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater., 27, 1876 (2015); <u>https://doi.org/10.1021/acs.chemmater.5b00177</u>.

[13] H.J. Zhao, Syntheses, crystal structures, and NLO properties of the quaternary sulfides $RE_3Sb_{0.33}SiS_7$ (RE = La, Pr). J. Solid State Chem., 227, 5 (2015); <u>https://doi.org/10.1016/j.jssc.2015.03.010</u>.

[14] B.W. Rudyk, S.S. Stoyko, A.O. Oliynyk, A. Mar, *Rare-earth transition-metal gallium chalcogenides* RE_3MGaCh_7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem., 210, 79, (2014); https://doi.org/10.1016/j.jssc.2013.11.003.

[15] L. Akselrud, Y. Grin, *WinCSD: Software package for crystallographic calculations (Version 4)*, J. Appl. Cryst., 47, 803 (2014); <u>https://doi.org/10.1107/s1600576714001058</u>

[16] K. Momma, F. Izumi, *VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,* J. Appl. Cryst., 44, 1272 (2011); <u>https://doi.org/10.1107/S0021889811038970</u>.

[17] A.M. Loireau-Lozach, M. Guittard, J. Flahaut, *Systemes* $L_2S_3 - Ga_2S_3$ (L = La, *Ce*, *Dy*, *Er et Y*), Mat. Res. Bull. 12, 881, (1977).

[18] M. Patrie, M. Guittard, *Chimie minerale. Sur les composes du type Ce*₆ $Al_{10/3}S_{14}$, C. R. Acad. Sci., C, 268, 1136 (1969).

[19] G.V. Samsonov, Y.B. Paderno, M.I. Murguzov, V.P. Fedorchenko, Z.Sh. Karaev, *Gallochalcogenides of the rare-earth metals*, Soviet powder metallurgy and metal ceramics 6, 75 (1967); <u>https://doi.org/10.1007/BF00773388</u>.

[20] N.M Blashko, O.V. Marchuk, I.D. Olekseyuk, A.O. Fedorchuk, *Krystalichna struktura spoluky Tb₃Ga_{1.67}S₇*, Naukovyi visnyk Chernivetskoho universytetu. Khimiia., 781 (2016). [in Ukraine].

[21] M. Guittard, M. Julien-Pouzol, *Les composes hexagonaux de type La₃CuSiS₇*, Bulletin de la Societe Chimique de France, 6, 2207 (1972).

[22] N. Wiberg, E. Wiberg, A. Holleman, *Lehrbuch der Anorganischen Chemie*. Walter de Gruyter. 102. Auflage, 2003-2004 (2007).

N.M. Blashko¹, O.V. Marchuk¹, A.O. Fedorchuk²

The crystal structure of R₃Fe_{0.1}Ga_{1.6}S₇ chalcogenides (R – La, Ce, Pr and Tb)

¹Lesya Ukrainka Volyn National University, Lutsk, Ukraine <u>blashko.nazarii@vnu.edu.ua</u>

²Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Lviv, Ukraine <u>ft@ua.fm</u>

The paper reports the study of the crystal structure of chalcogenides of the composition $R_3Fe_{0.1}Ga_{1.6}S_7$ (R = La, Ce, Pr and Tb) as promising materials predicted to possess interesting nonlinear optical and electrical properties. The 1 g samples of stoichiometric composition were synthesized by co-melting the elements in quartz containers evacuated to a residual pressure of 10⁻² Pa at the maximum synthesis temperature of 1100 °C. The crystal structure of the chalcogenides La₃Fe_{0.1}Ga_{1.6}S₇ (A) {a = 10.1884(6) Å, c = 6.0515(4) Å, $R_I = 0.0940$, $R_P = 0.2503$ }, Ce₃Fe_{0.1}Ga_{1.6}S₇ (B) {a = 10.0864(4) Å, c = 6.0440(3) Å, $R_I = 0.0695$, $R_P = 0.1935$ }, Pr₃Fe_{0.1}Ga_{1.6}S₇ (C) $\{a = 9.9853(3) \text{ Å}, c = 6.0648(2) \text{ Å}, R_I = 0.0730, R_P = 0.1777\}$ and Tb₃Fe_{0.1}Ga_{1.6}S₇ (D) $\{a = 9.6692(7) \text{ Å}, B_P = 0.1777\}$ c = 6.0799(5) Å, $R_l = 0.0909$, $R_P = 0.2742$ was studied by X-ray powder method. It was determined that the structure of the synthesized phases belongs to the hexagonal symmetry (La₃CuSiS₇ structure type; space group P6₃ (No. 173); Pearson symbol hP24). The structure of the complex chalcogenides (A), (B), (C) and (D) is based on the $R_3Ga_{1.67}S_7$ sulfides (R = La, Ce, Pr, and Tb) by substituting gallium atoms in the 2a sites with atoms of statistical mixture M1{0.57(2) Ga + 0.10(2) Fe}, M2{0.56(1) Ga + 0.10(2) Fe}, M3 {0.61(8) Ga + 0.09(1) Fe} and M4 $\{0.57(2) \text{ Ga} + 0.10(2) \text{ Fe}\}$, respectively. Rare earth atoms are localized in the 6c sites and center sulfur atoms to form trigonal prisms with an additional atom [R 3S13S21S3]. The trigonal prisms form "blocks" 3[R 7S] where they share edges. Atoms of statistical mixtures M1, M2, M3, M4 are localized in the 2a sites forming [M 6S2] octahedra. These octahedra are face-sharing and form columns in the direction of the c axis. Ga atoms in the 2b sites are surrounded by four sulfur atoms [Ga 3S₁1S₃].

Keywords: crystal structure, rare earth elements, chalcogenides, X-ray powder method, EDAX analysis.