PHYSICS AND CHEMISTRY OF SOLID STATE

V. 25, No.4 (2024) pp. 677-683

Section: Chemistry

DOI: 10.15330/pcss.25.4.677-683

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 25, № 4 (2024) С. 677-683

Хімічні науки

UDC: 544.022.242

ISSN 1729-4428 (Print) ISSN 2309-8589 (Online)

N.M. Blashko¹, O.V. Marchuk¹, A.O. Fedorchuk² **The crystal structure of R₃Fe_{0.1}Ga_{1.6}S₇ chalcogenides (R – La, Ce, Pr and Tb)**

¹Lesya Ukrainka Volyn National University, Lutsk, Ukraine <u>blashko.nazarii@vnu.edu.ua</u> ²Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Lviv, Ukraine <u>ft@ua.fm</u>

The paper reports the study of the crystal structure of chalcogenides of the composition R₃Fe_{0.1}Ga_{1.6}S₇ (R = La, Ce, Pr and Tb) as promising materials predicted to possess interesting nonlinear optical and electrical properties. The 1 g samples of stoichiometric composition were synthesized by co-melting the elements in quartz containers evacuated to a residual pressure of 10^{-2} Pa at the maximum synthesis temperature of 1100 °C. The crystal structure of the chalcogenides La₃Fe_{0.1}Ga_{1.6}S₇ (A) {a = 10.1884(6) Å, c = 6.0515(4) Å, $R_I = 0.0940$, $R_P = 0.2503$ }, Ce₃Fe_{0.1}Ga_{1.6}S₇ (B) {a = 10.0864(4) Å, c = 6.0440(3) Å, $R_I = 0.0695$, $R_P = 0.1935$ }, Pr₃Fe_{0.1}Ga_{1.6}S₇ (C) $\{a = 9.9853(3) \text{ Å}, c = 6.0648(2) \text{ Å}, R_I = 0.0730, R_P = 0.1777\}$ and $\text{Tb}_3\text{Fe}_{0.1}\text{Ga}_{1.6}\text{S}_7$ (D) $\{a = 9.6692(7) \text{ Å}, a = 9.6692(7) \text{ Å}\}$ c = 6.0799(5) Å, $R_I = 0.0909$, $R_P = 0.2742$ was studied by X-ray powder method. It was determined that the structure of the synthesized phases belongs to the hexagonal symmetry (La₃CuSiS₇ structure type; space group P6₃ (No. 173); Pearson symbol hP24). The structure of the complex chalcogenides (A), (B), (C) and (D) is based on the $R_3Ga_{1.67}S_7$ sulfides (R = La, Ce, Pr, and Tb) by substituting gallium atoms in the 2*a* sites with atoms of statistical mixture M1{0.57(2) Ga + 0.10(2) Fe}, M2{0.56(1) Ga + 0.10(2) Fe}, M3 {0.61(8) Ga + 0.09(1) Fe} and M4 $\{0.57(2) \text{ Ga} + 0.10(2) \text{ Fe}\}$, respectively. Rare earth atoms are localized in the 6c sites and center sulfur atoms to form trigonal prisms with an additional atom [R 3S₁3S₂1S₃]. The trigonal prisms form "blocks" 3[R 7S] where they share edges. Atoms of statistical mixtures M1, M2, M3, M4 are localized in the 2a sites forming [M 6S₂] octahedra. These octahedra are face-sharing and form columns in the direction of the c axis. Ga atoms in the 2b sites are surrounded by four sulfur atoms [Ga 3S₁1S₃].

Key words: crystal structure, rare earth elements, chalcogenides, X-ray powder method, EDAX analysis.

Received 12 March 2024; Accepted 11 October 2024.

Introduction

A rather promising area of the development of modern chemical technology and crystal chemistry is the study of chalcogenides containing elements of the lanthanide family [1, 2]. Such compounds have interesting optical [3], magnetic [4], thermal [5], electrical [6, 7] and other properties. The presence of transition metal atoms in the cell creates a corresponding crystal-chemical order in which lanthanides occupy internal sites [8, 9]. Such chalcogenides crystallize in a non-centrosymmetric hexagonal space group $P6_3$ and can have nonlinear optical properties [10-14]. The paper presents the results of the study of the crystal structure of four chalcogenides La₃Fe_{0.1}Ga_{1.6}S₇, Ce₃Fe_{0.1}Ga_{1.6}S₇, Pr₃Fe_{0.1}Ga_{1.6}S₇ and $Tb_3Fe_{0.1}Ga_{1.6}S_7$ by the Rietveld method. One of the goals of the research is to obtain complex rare-earth-containing chalcogenides within the search for materials with predicted physical properties.

I. Experimental

Four 1 g alloys to study the crystal structure of the $R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides (R = La, Ce, Pr, and Tb) were synthesized from high-purity elements (at least 99.99 mass %) in an MP-30 electric muffle furnace. The synthesis in evacuated to 10^{-2} Pa quartz containers was step-wise by heating to 700°C at the rate of 40°C/h; exposure for 10 h; heating to 1100°C at 12°C/h; exposure

for 2 h; cooling to 500° C at 6° C/h; homogenizing annealing for 240 h; quenching into room-temperature water without unsealing the containers.

The principal structure parameters of the synthesized phases were calculated from the diffraction patterns recorded at a DRON 4-13 diffractometer (CuK_{α} radiation; 2 Θ range = 10–100°; scan step 0.02°; 10 s exposure at each point). The crystal structure was calculated using the Rietveld method realized in WinCSD software package [15]. Visualization of the crystal structure utilized VESTA software [16].

II. Results and discussion

The structure of the sulfides of stoichiometric composition $R_3Fe_{0.1}Ga_{1.6}S_7$ (R = La, Ce, Pr and Tb) is obtained from the ternary compounds $R_3Ga_{1.67}S_7$ (R = La, Ce, Pr and Tb) by partial substitution of gallium atoms in the 2*a* sites with divalent ferrum. The crystallographic

characteristics of the original chalcogenides are presented in Table 1.

,	Table 1.
Crystallographic characteristics of R ₃ Ga _{1.67} S ₇ (I	R – La,

Ce, Pr, 10) compounds					
Compound	Space	Unit Cell, Å			Dof
Compound	group	а	b	С	Kel.
La ₃ Ga _{1.67} S ₇	$P6_{3}$	10.15	١	6.08	[17, 18]
La ₃ Ga _{1.67} S ₇	$P6_{3}$	10.17	١	6.082	[19]
Ce ₃ Ga _{1.67} S ₇	$P6_{3}$	10.03	١	6.08	[17, 18]
$Pr_3Ga_{1.67}S_7$	$P6_{3}$	9.94	١	6.08	[18]
$Tb_3Ga_{1.67}S_7$	$P6_{3}$	9.67		6.08	[18, 20]

The crystal structure of sulfides was studied by X-ray powder method. Analysis of Miller indices hkl of the reflections and their intensities indicated that the structure of the synthesized chalcogenides belongs to the structural type La₃CuSiS₇ [21]. The conditions of the X-ray experiment and the crystallographic characteristics of the

Table 2.

Shooting conditions and results of refinement of the crystal structure of $R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides (R – La, Ce)

Parameters	La ₃ Fe _{0.1} Ga _{1.6} S ₇	Ce ₃ Fe _{0.1} Ga _{1.6} S ₇
Space group	<i>P</i> 6 ₃ (173)	<i>P</i> 6 ₃ (173)
<i>a</i> , (Å)	10.1884(6)	10.0864(4)
<i>c</i> , (Å)	6.0515(4)	6.0440(3)
Cell volume (Å ³)	544.0(1)	532.51(6)
Number of atoms in cell	23.3	23.3
Calculated Density (g/cm ³)	4.6130(9)	4.7351(6)
Absorption coefficient (1/cm)	1044.88	1104.07
Radiation and wavelenght (Å)	Cu 1.54185	
Diffractometer	Dron 4-13	
Mode of refinement	Full Profile	
Program	WinCSD	
Number of atom sites	6	
Number of free parameters	19	
2Θ and $\sin\Theta/\lambda$ (max.)	100.00; 0.496	100.05; 0.497
R_{I}	0.0940	0.0695
R _P	0.2503	0.1935
Scale factor	0.25030(5)	0.5262(3)

Table 3.

Shooting conditions and results of refinement of the crystal structure of R₃Fe_{0.1}Ga_{1.6}S₇ chalcogenides (R - Pr, Tb)

Parameters	Pr3Fe0.1Ga1.6S7	Tb3Fe0.1Ga1.6S7	
Space group	<i>P</i> 6 ₃ (173)	<i>P</i> 6 ₃ (173)	
<i>a</i> , (Å)	9.9853(3)	9.6692(7)	
<i>c</i> , (Å)	6.0648(2)	6.0799(5)	
Cell volume (Å ³)	523.68(4)	492.3(1)	
Number of atoms in cell	23.3	23.3	
Calculated Density (g/cm ³)	4.8462(4)	5.505(1)	
Absorption coefficient (1/cm)	1158.18	1174.46	
Radiation and wavelenght (Å)	Cu 1.54185		
Diffractometer	Dron 4-13		
Mode of refinement	Full Profile		
Program	WinCSD		
Number of atom sites	6		
Number of free parameters	19		
2Θ and $\sin\Theta/\lambda$ (max.)	100.02; 0.497	100.00; 0.497	
R_I	0.0730	0.0909	
R _P	0.1777	0.2742	
Scale factor	0.17824(0)	0.22804(2)	

synthesized chalcogenides are shown in Tables 2 and 3.

The observed, calculated and difference diffraction patterns of $R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides (R – La, Ce, Pr and Tb) are shown in Figure 1.

Refinement of coordinates and isotropic thermal displacement parameters of atoms (Table 4) resulted in relatively satisfactory values of fit factors.

Unit cell and coordination polyhedra [R 7S], [M 6S] and [Ga 4S] in the structure of synthesized sulfides are shown in Figure 2.

The crystal structure of the synthesized sulfides belongs to hexagonal symmetry and contains by the trigonal prisms [R $3S_13S_21S_3$] (R – La, Ce, Pr or Tb). Rare earth atoms occupy the 6c sites and coordinate seven sulfur atoms. The trigonal prisms with an additional atom form "blocks" 3[R 7S] where the prisms share edges.

Atoms of statistical mixtures M1–M4 occupying the 2a sites are characterized by the octahedral coordination (C.N. 6). The [M 6S₂] octahedra have joint faces and form columns in the direction of the *c* axis.

The introduction of divalent metal atoms to the structure of the sulfides $La_3Ga_{1.67}S_7$ and $Ce_3Ga_{1.67}S_7$ results in more symmetrical octahedra [M 6S₂] compared to [Ga 6S₂]: $\chi([Ga 6S_2]) = 0.03891$ in the $La_3Ga_{1.67}S_7$ structure $vs \chi([M 6S_2]) = 0.02398$ in $La_3Fe_{0.1}Ga_{1.6}S_7$; $\chi([Ga 6S_2]) = 0.03955$ in $Ce_3Ga_{1.67}S_7$ $vs \chi([M 6S_2]) = 0.02379$ in the structure of $Ce_3Fe_{0.1}Ga_{1.6}S_7$

Fig. 1. Observed, calculated and difference diffraction patterns of chalcogenides: $La_3Fe_{0.1}Ga_{1.6}S_7$ (A), C $e_3Fe_{0.1}Ga_{1.6}S_7$ (B), P $r_3Fe_{0.1}Ga_{1.6}S_7$ (C) and T $b_3Fe_{0.1}Ga_{1.6}S_7$ (D).

Fig. 2. Unit cell and coordination polyhedra [R 7S], [M 6S] and [Ga 4S] in the structure $R_3Fe_{0.1}Ga_{1.6}S_7$ (R – La, Ce, Pr and Tb).

Coordinates and isotropic therma	parameters of atoms in the structure	$R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides
----------------------------------	--------------------------------------	--

(R – La, Ce, Pr та Тb).					
La3Fe0.1Ga1.6S7					
Atom	Wyck	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 ({\rm \AA}^2)$
La	6 <i>c</i>	0.3746(3)	0.2324(3)	0.2224(11)	1.12(4)
Ga	2b	1/3	2/3	0.1399(15)	1.4(3)
M1	2 <i>a</i>	0	0	0.00000	1.5(3)
S1	6 <i>c</i>	0.507(2)	0.0985(12)	0.486(2)	0.9(3)
S2	6 <i>c</i>	0.0888(11)	0.2303(11)	0.267(2)	0.7(3)
S3	2 <i>b</i>	1/3	2/3	0.483(3)	1.1(5)
M1 – 0.57(2) C	Ga + 0.10(2) Fe				
			Ce3Fe0.1Ga1.6S7		
Atom	Wyck	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 ({\rm \AA}^2)$
Ce	6 <i>c</i>	0.3743(2)	0.2328(2)	0.2286(8)	0.62(4)
Ga	2 <i>b</i>	1/3	2/3	0.1502(11)	0.3(2)
M2	2a	0	0	0.00000	0.9(3)
S1	6 <i>c</i>	0.0912(9)	0.2435(9)	0.269(2)	0.3(2)
S2	6 <i>c</i>	0.1519(13)	0.0925(11)	0.4982(15)	0.7(3)
S3	2 <i>b</i>	1/3	2/3	0.518(3)	0.3(4)
M2 - 0.56(1) C	Ga + 0.10(2) Fe				
			Pr3Fe0.1Ga1.6S7		
Atom	Wyck	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 ({\rm \AA}^2)$
Pr	6 <i>c</i>	0.3742(2)	0.1453(2)	0.2345(5)	1.04(5)
Ga	2 <i>b</i>	1/3	2/3	0.1568(6)	0.65(13)
M3	2a	0	0	0.018(2)	1.7(2)
S1	6 <i>c</i>	0.1008(7)	0.5218(8)	0.0074(9)	0.9(3)
S2	6 <i>c</i>	0.1470(7)	0.2394(6)	0.2969(9)	0.8(3)
S3	2b	1/3	2/3	0.5167(15)	0.6(3)
M3 - 0.61(8) Ga + 0.09(1) Fe					
Tb3Fe0.1Ga1.6S7					
Atom	Wyck	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 ({\rm \AA}^2)$
Tb	6 <i>c</i>	0.3779(3)	0.2244(11)	0.2142(11)	1.06(6)
Ga	2b	1/3	2/3	0.1475(15)	0.7(3)
M4	2a	0	0	0.001(3)	1.3(4)
S1	6 <i>c</i>	0.491(2)	0.074(2)	0.488(2)	1.4(3)
S2	6 <i>c</i>	0.0944(14)	0.2620(13)	0.292(2)	1.0(4)
S3	2b	1/3	2/3	0.513(4)	0.6(5)
M4 - 0.57(2) Ga + 0.10(2) Fe					

Gallium atoms occupying 2*b* sites are characterized by the tetrahedral coordination (C.N. 4). The [Ga 4S] tetrahedra are the most symmetrical in the $Pr_3Fe_{0.1}Ga_{1.6}S_7$ structure ($\chi = 0.00759$), and the least symmetrical in $La_3Fe_{0.1}Ga_{1.6}S_7$ ($\chi = 0.03405$).

The above-mentioned regularities in the symmetry of polyhedra allow us to state that the geometric parameters of polyhedra can be corrected by introducing atoms of chemical elements of different nature into the structure of rare-earth-containing chalcogenides. And therefore, to synthesize materials with predetermined crystal structure and physical properties. Calculated parameters of polyhedra in the structures of $R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides (R – La, Ce, Pr, Tb) are presented in Tables 5 and 6.

Interatomic distances in the structure of synthesized chalcogenides were calculated using WinCSD software [15].

Certain trends were discerned as the $r_{R^{3+}}$ value decreases.

The value of the interatomic distance δ (La–S1) in the La₃Fe_{0.1}Ga_{1.6}S₇ structure (Fig. 3) is the average between the sum of covalent radii δ (La–S)_{cov} and the sum of ionic radii δ (La–S)_{ion} [22].

Bond lengths $\delta(La-S2)$, $\delta(La-S3)$ and $\delta(La-S4)$ are commensurate with the sum of ionic radii $\delta(La-S)_{ion}$, and the values of $\delta(La-S5)$, $\delta(La-S6)$ and $\delta(La-S7)$ are larger than $\delta(La-S)_{ion}$. Bond lengths $\delta(Ce-S)_{1-5}$ in the Ce₃Fe_{0.1}Ga_{1.6}S₇ structure are commensurate with the the sum of ionic radii $\delta(Ce-S)_{ion}$, while the values of

Table 5.

Parameters of polyhedra [La(Ce) 7S], [M 6S] and [Ga 4S] in the structure $R_3Fe_{0.1}Ga_{1.6}S_7$ chalcogenides (R – I	La, Ce
--	--------

Parameters	La3Fe0.1Ga1.6S7	Ce3Fe0.1Ga1.6S7	
	$[La(Ce) 3S_13S_21S_3]$		
$\delta(La(Ce) - S), Å$	$2.834(19) - 3.040(13) \qquad 2.880(19) - 3.012(13)$		
$\delta(\text{La}(\text{Ce}) - \text{S})_{\text{mean}}, \text{\AA}$	2.9491	2.9265	
Distortion index (χ)	0.01628	0.01153	
V, Å ³	35.5051	34.7442	
CN / CN _{effective}	7 / 6.87	7 / 6.95	
	[]	M 6S ₂]	
$\delta(M-S), Å$	2.486(11) - 2.609(11)	2.566(10) - 2.691(10)	
$\delta(M-S)_{mean}$, Å	2.5475	2.6288	
Distortion index (χ)	0.02398	0.02379	
V, Å ³	21.9801	24.1801	
CN / CN _{effective}	6 / 5.87	6 / 5.87	
	[Ga 3S11S3]		
δ(Ga – S1), Å	2.11(3)	2.22(2)	
δ(Ga – S3), Å	2.318(11)	2.326(10)	
$\delta(Ga - S)_{mean}$, Å	2.2663	2.3009	
\angle S1 – Ga – S3, (°)	113.7(4)	113.3(4)	
\angle S1 – Ga – S1, (°)	104.9(5)	105.4(4)	
Distortion index (χ)	0.03405	0.01668	
V, Å ³	5.9359	6.2173	
CN / CN _{effective}	4 / 3.66	4 / 3.94	

Table 6.

Parameters of polyhedra [Pr(Tb) 7S], [M 6S] and [Ga 4S] in the structure R₃Fe_{0.1}Ga_{1.6}S₇ chalcogenides (R – Pr, Tb)

Parameters	Pr ₃ Fe _{0.1} Ga _{1.6} S ₇	Tb3Fe0.1Ga1.6S7	
	$[\Pr(Tb) 3S_1 3S_2 1S_3]$		
$\delta(\Pr(Tb) - S), Å$	2.829(8) - 3.046(6)	2.731(12) - 2.98(3)	
$\delta(\Pr(Tb) - S)_{mean}$, Å	2.9068	2.8180	
Distortion index (χ)	0.01369	0.03186	
V, Å ³	34.2436	31.5331	
CN / CN _{effective}	7 / 6.89	7 / 6.68	
	[M	6S ₂]	
$\delta(M-S), Å$	2.478(9) - 2.690(10)	2.56(2) - 2.84(2)	
$\delta(M-S)_{mean}$, Å	2.5840	2.7007	
Distortion index (χ)	0.04118	0.05194	
V, Å ³	22.8827	26.0173	
CN / CN _{effective}	6 / 5.58	6 / 5.32	
	[Ga 3S ₁ 1S ₃]		
δ(Ga – S1), Å	2.179(13)	2.23(3)	
δ(Ga – S3), Å	2.224(7)	2.426(16)	
$\delta(Ga - S)_{mean}$, Å	2.2126	2.3750	
∠ S1 – Ga – S3, (°)	114.03(17)	113.5(4)	
\angle S1 – Ga – S1, (°)	104.6(2)	105.5(5)	
Distortion index (χ)	0.00759	0.03154	
V, Å ³	5.5103	6.8358	
CN / CN _{effective}	4 / 3.99	4 / 3.72	

 $\delta(\text{Ce}-\text{S6})$ and $\delta(\text{Ce}-\text{S7})$ are larger than $\delta(\text{Ce}-\text{S})_{\text{ion}}$. Bond length $\delta(\text{Pr}-\text{S7})$ in the $\text{Pr}_3\text{Fe}_{0.1}\text{Ga}_{1.6}\text{S}_7$ structure is significantly increased in comparison with $\delta(\text{Pr}-\text{S})_{\text{ion}}$. Experimentally determined values of bond lengths $\delta(\text{Tb}-\text{S})_{1-5}$ for $\text{Tb}_3\text{Fe}_{0.1}\text{Ga}_{1.6}\text{S}_7$ are in the range between the sum of covalent radii $\delta(\text{Tb}-\text{S})_{\text{cov}}$ and the sum of ionic radii $\delta(\text{Tb}-\text{S})_{\text{ion}}$. The values of $\delta(\text{Tb}-\text{S6})$ and $\delta(\text{Tb}-\text{S7})$ are greater than the bond length calculated as the sum of the ionic radii.

For the chalcogenide series $R_3Fe_{0.1}Ga_{1.6}S_7$, the unit cell parameter *a* decreases with the decrease of the radius of R^{3+} ion from 10.1884(6) Å for La₃Fe_{0.1}Ga_{1.6}S₇ to 9.6692(7) Å for Tb₃Fe_{0.1}Ga_{1.6}S₇; the unit cell volume decreases from 544.0(1) Å³ for La₃Fe_{0.1}Ga_{1.6}S₇ to 492.3(1) Å³ for Tb₃Fe_{0.1}Ga_{1.6}S₇. Such a change in the unit cell parameters correlates with a decrease in the volumes of trigonal prisms [R 7S] from 35.5051 Å³ in the La₃Fe_{0.1}Ga_{1.6}S₇ structure to 31.5331 Å³ in Tb₃Fe_{0.1}Ga_{1.6}S₇. Elemental composition of the Pr₃Fe_{0.1}Ga_{1.6}S₇

Fig. 3. Interatomic distances and R - S in structure $R_3Fe_{0.1}Ga_{1.6}S_7$ (R - La, Ce, Pr and Tb).

chalcogenide was further evaluated using EDAX analysis. Calculated atomic percentage of elements are Pr, 25.64%, Fe, 0.86%, Ga, 13.68%, S, 59.83%; found values are Pr, 26.74 \pm 4.70%, Fe, 1.2 \pm 0.17%, Ga, 14.12 \pm 1.34%, S, 57.94 \pm 3.12%. The results are presented in Figure 4 and show that structure calculation and elemental analysis are in good agreement.

Conclusions

Four quaternary chalcogenides $R_3Fe_{0.1}Ga_{1.6}S_7$ (R – La, Ce, Pr and Tb) were synthesized for the first time, and their crystal structure was analyzed by X-ray powder method. It was established from experimentally obtained data sets that these phases crystallize in hexagonal symmetry (La₃CuSiS₇ structure type; S.G. *P*6₃; Pearson symbol *hP* 24) with unit cell parameters *a* = 10.1884(6) Å, *c* = 6.0515(4) Å and *V* = 544.0(1) Å³ for La₃Fe_{0.1}Ga_{1.6}S₇; *a* = 10.0864(4) Å, *c* = 6.0440(3) Å and *V* =532.51 (6) Å³

Fig. 4. EDAX spectrum Pr₃Fe_{0.1}Ga_{1.6}S₇ chalcogenide.

for Ce₃Fe_{0.1}Ga_{1.6}S₇; a = 9.9853(3) Å, c = 6.0648(2) Å and V = 523.68(4) Å³ for Pr₃Fe_{0.1}Ga_{1.6}S₇; a = 9.6692(7) Å, c = 6.0799(5) Å and V = 492.3(1) Å³ for Tb₃Fe_{0.1}Ga_{1.6}S₇).

Given that the synthesized chalcogenides are characterized by a non-centrosymmetric structure, they can be used as materials for studying their nonlinear optical and other characteristics.

Blashko N. – Senior Laboratory Assistant of the Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University;

Marchuk O. – PhD in Chemistry, Associate Professor, Associate Professor of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University;

Fedorchuk A. – Doctor of Chemistry, Professor, Professor of the Department of Biological and General Chemistry, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies.

[1] Jean-Claude Bunzli, V.K. Pecharsky, *Handbook on the Physics and Chemistry of Rare Earths*, Elsevier Science Publishers B.V., 50, 480 (2016).

[2] V.A. Starodub, *Ternary and quaternary chalcogenides of group IB elements*, Russ. Chem. Rev. 68, 10 (1999); https://doi.org/10.1070/RC1999v068n10ABEH000480.

[3] B.J. Eggleton, B. Luther-Davies, K. Richardson, *Chalcogenide photonics. Nat. Photon.*, 5, 141 (2011); https://doi.org/10.1038/nphoton.2011.309.

[4] N.A. Spaldin, *Magnetic Materials: Fundamentals and Applications*. Cambridge University Press. Second edition, (2010); <u>https://doi.org/10.1017/CBO9780511781599</u>.

[5] T.M. Tritt, *Thermal Conductivity: Theory, Properties, and Applications*. Springer Science & Business Media., 105 (2005); <u>https://doi.org/10.1007/b136496</u>.

[6] L. Fu, C.L. Kane, E.J. Mele, *Topological insulators in three dimensions*, Phys. Rev. Lett., 98 (2007); https://doi.org/10.1103/PhysRevLett.98.106803.

[7] Y. Shi, C. Sturm, H. Kleinke, *Chalcogenides as thermoelectric materials*, J. Solid State Chem., 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.

[8] L.D. Gulay, M. Daszkiewicz, I.P. Ruda, O.V. Marchuk, $La_2Pb(SiS_4)_2$, Acta Cryst. C., 66, 3 (2010); https://doi.org/10.1107/S0108270110000247.

[9] N.M. Blashko, O.V. Smitiukh, O.V. Marchuk, The crystal structure of $La_3Pb_{0.1}Ga_{1.6}S_7$ and $La_3Pb_{0.1}Ga_{1.6}S_7$ compounds, Physics and chemistry of solid state, 23(1) (2022); <u>https://doi.org/10.15330/pcss.23.1.96-100</u>.

[10] A.K. Iyer, B.W. Rudyk, X. Lin, H. Singh, A.Z. Sharma, C.R. Wiebe, A. Mar, *Noncentrosymmetric rare-earth copper gallium chalcogenides* $RE_3CuGaCh_7$ (RE = La - Nd; Ch = S, Se): An unexpected combination. J. Solid State Chem., 229, 150 (2015); <u>https://doi.org/10.1016/j.jssc.2015.05.016</u>.

[11] A.K. Iyer, W. Yin, B.W. Rudyk, X. Lin, T. Nilges, A. Mar, *Metal ion displacements in noncentrosymmetric chalcogenides* $La_3Ga_{1.67}S_7$, $La_3Ag_{0.6}GaCh_7$ (Ch = S, Se) and La_3MGaSe_7 (M = Zn, Cd). J. Solid State Chem., 243, 221 (2016); <u>https://doi.org/10.1016/j.jssc.2016.08.031</u>.

[12] Y.F. Shi, Y.K. Chen, M.K. Chen, L.M. Wu, H. Lin, L.J. Zhou, L. Chen, *Strongest second harmonic generation* in the polar R_3MTQ_7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater., 27, 1876 (2015); https://doi.org/10.1021/acs.chemmater.5b00177.

[13] H.J. Zhao, Syntheses, crystal structures, and NLO properties of the quaternary sulfides $RE_3Sb_{0.33}SiS_7$ (RE = La, Pr). J. Solid State Chem., 227, 5 (2015); <u>https://doi.org/10.1016/j.jssc.2015.03.010</u>.

[14] B.W. Rudyk, S.S. Stoyko, A.O. Oliynyk, A. Mar, *Rare-earth transition-metal gallium chalcogenides* RE_3MGaCh_7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem., 210, 79, (2014); https://doi.org/10.1016/j.jssc.2013.11.003.

[15] L. Akselrud, Y. Grin, WinCSD: Software package for crystallographic calculations (Version 4), J. Appl. Cryst., 47, 803 (2014); <u>https://doi.org/10.1107/s1600576714001058</u>

[16] K. Momma, F. Izumi, *VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,* J. Appl. Cryst., 44, 1272 (2011); <u>https://doi.org/10.1107/S0021889811038970</u>.

[17] A.M. Loireau-Lozach, M. Guittard, J. Flahaut, *Systemes* $L_2S_3 - Ga_2S_3$ (L = La, *Ce*, *Dy*, *Er et Y*), Mat. Res. Bull. 12, 881, (1977).

[18] M. Patrie, M. Guittard, *Chimie minerale. Sur les composes du type Ce*₆*Al*_{10/3}*S*₁₄, C. R. Acad. Sci., C, 268, 1136 (1969).

[19] G.V. Samsonov, Y.B. Paderno, M.I. Murguzov, V.P. Fedorchenko, Z.Sh. Karaev, *Gallochalcogenides of the rare-earth metals*, Soviet powder metallurgy and metal ceramics 6, 75 (1967); <u>https://doi.org/10.1007/BF00773388</u>.

[20] N.M Blashko, O.V. Marchuk, I.D. Olekseyuk, A.O. Fedorchuk, *Krystalichna struktura spoluky Tb₃Ga_{1.67}S₇*, Naukovyi visnyk Chernivetskoho universytetu. Khimiia., 781 (2016). [in Ukraine].

[21] M. Guittard, M. Julien-Pouzol, *Les composes hexagonaux de type La₃CuSiS₇*, Bulletin de la Societe Chimique de France, 6, 2207 (1972).

[22] N. Wiberg, E. Wiberg, A. Holleman, *Lehrbuch der Anorganischen Chemie*, Walter de Gruyter. 102. Auflage, 2003-2004 (2007).

Н.М. Блашко¹, О.В. Марчук¹, А.О. Федорчук²

Кристалічна структура халькогенідів R₃Fe_{0.1}Ga_{1.6}S₇ (R – La, Ce, Pr та Tb)

¹Волинський національний університет імені Лесі Українки, Луцьк, Україна, <u>blashko.nazarii@vnu.edu.ua</u> ²Львівський національний університет ветеринарної медицини та біотехнологій імені С.З. Ґжицького, Львів, Україна ft@ua.fm

У роботі представлено результати дослідження кристалічної структури халькогенідів складу R₃Fe_{0.1}Ga_{1.6}S₇ (R = La, Ce, Pr та Tb) як перспективних матеріалів, що прогнозовано володіють цікавими нелінійно-оптичними та електричними властивостями. Синтез зразків стехіометричного складу, загальною масою один грам кожен, отримано сплавлянням простих речовин у вакуумованих кварцевих контейнерах до залишкового тиску 10⁻² Па за максимальної температури синтезу 1100 °С. Кристалічна структура халькогенідів La₃Fe_{0.1}Ga_{1.6}S₇ (A) {*a* = 10.1884(6) Å, *c* = 6.0515(4) Å, *R_I* = 0.0940, *R_P* = 0.2503}, Ce₃Fe_{0.1}Ga_{1.6}S₇ (B) {a = 10.0864(4) Å, c = 6.0440(3) Å, $R_I = 0.0695$, $R_P = 0.1935$ }, $Pr_3Fe_{0.1}Ga_{1.6}S_7$ (C) {a = 9.9853(3) Å, c = 6.0648(2) Å, $R_l = 0.0730$, $R_P = 0.1777$ } Ta Tb₃Fe_{0.1}Ga_{1.6}S₇ (D) {a = 9.6692(7) Å, c = 6.0799(5) Å, $R_l = 0.0909$, *R*_P = 0.2742} вивчена рентгенівським методом порошку. Встановлено приналежність структури синтезованих фаз до гексагональної сингонії (структурний тип La3CuSiS7; просторова група Р63; символ Пірсона hP24,173). Складні халькогеніди (A), (B), (C) і (D) синтезовані на основі сульфідів R₃Ga_{1.67}S₇ (R = La, Ce, Pr та Tb) шляхом заміщення атомів галію в правильній системі точок (ПСТ) 2a атомами статистичних сумішей M1 {0.57(2) Ga + 0.10(2) Fe}, M2 {0.56(1) Ga + 0.10(2) Fe}, M3 {0.61(8) Ga + 0.09(1) Fe} i M4 {0.57(2) Ga + 0.10(2) Fe} відповідно. У структурі одержаних халькогенідів атоми рідкісноземельних елементів локалізовані в ПСТ 6с і разом з атомами сульфуру формують тригональні призми, що мають один додатковий атом [R 3S13S21S3]. Тригональні призми з одним додатковим атомом утворюють "блоки" 3[R 7S]. У цих "блоках" тригональні призми між собою з'єднані ребрами. Атоми статистичних сумішей M1, M2, M3 і M4, що локалізовані в ПСТ 2*a*, формують октаедри [M1 6S₂], [M2 6S₂], [M3 6S2] і [M4 6S2] відповідно. Ці октаедри між собою з'єднані гранями та в напрямку осі с утворюють колони. В ПСТ 2b атоми Ga оточені чотирма атомами сульфуру [Ga 3S₁1S₃].

Ключові слова: кристалічна структура, рідкісноземельні елементи, хальогеніди, ренттенівський метод порошку, EDAX аналіз.