Nutritional Interventions in Neurological Pathologies: Targeting Inflammation and Oxidative Stress

Authors

DOI:

https://doi.org/10.15330/jpnubio.11.44-56

Keywords:

Neurological Disorders, Antioxidant System, Inflammation, oxidative stress

Abstract

Neurological pathologies encompass various disorders affecting the central and peripheral nervous systems, arising from structural, biochemical, or electrical abnormalities in the brain, spinal cord, or peripheral nerves. These pathologies manifest through diverse symptoms, including numbness, cognitive impairment, impaired motor coordination, seizures, and altered states of consciousness. According to the World Health Organization, neurological disorders affect individuals across all age groups and geographical regions, with nearly one billion people currently impacted globally. The etiology of neurological pathologies is evidently multifactorial, encompassing genetic mutations, disruptions in cellular systems and pathways that lead to neuronal disturbances, and various environmental factors that may accelerate disease progression.

This review focuses on how inflammation and oxidative stress contribute to developing neurological disorders, with an overview of potential nutritional interventions. First, we define and describe the concept of neurological pathology and emphasize the critical role of animal models in advancing research in this field. Subsequently, we discuss oxidative stress and inflammation, their impacts on neuronal cells, and evidence-based nutritional strategies that may mitigate these effects. The primary objective is to underscore the potential of dietary approaches in reducing the risk of neurological disorders by targeting key mechanisms such as oxidative stress and inflammation. We propose that a carefully designed nutritional regimen can enhance the balance between cellular damage and repair, thereby decreasing the likelihood of irreversible neuronal damage, extending lifespan and especially healthspan, and improving the overall quality of life.

Author Biographies

Andrii Divnych, Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Ph.D. student, Department of Biochemistry and Biotechnology

Volodymyr Lushchak, Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Professor, Doctor of Sciences, Department of Biochemistry and Biotechnology

References

Alkadi, H. (2020). A Review on Free Radicals and Antioxidants. Infectious Disorders - Drug Targets, 20(1), 16–26. https://doi.org/10.2174/1871526518666180628124323

Ávila‐Escalante, M. L., Coop‐Gamas, F., Cervantes‐Rodríguez, M., Méndez‐Iturbide, D., & Aranda‐González, I. I. (2020). The effect of diet on oxidative stress and metabolic diseases—Clinically controlled trials. Journal of Food Biochemistry, 44(5). https://doi.org/10.1111/jfbc.13191

Barber, K., Mendonca, P., Evans, J. A., & Soliman, K. F. A. (2023). Antioxidant and Anti-Inflammatory Mechanisms of Cardamonin through Nrf2 Activation and NF-kB Suppression in LPS-Activated BV-2 Microglial Cells. International Journal of Molecular Sciences, 24(13), 10872. https://doi.org/10.3390/ijms241310872

Camiletti-Moirón, D., Aparicio, V., Nebot, E., Medina, G., Martínez, R., Kapravelou, G., Andrade, A., Porres, J., López-Jurado, M., & Aranda, P. (2015). High-intensity Exercise Modifies the Effects of Stanozolol on Brain Oxidative Stress in Rats. International Journal of Sports Medicine, 36(12), 984–991. https://doi.org/10.1055/s-0035-1548941

Cavaliere, G., Trinchese, G., Penna, E., Cimmino, F., Pirozzi, C., Lama, A., Annunziata, C., Catapano, A., Mattace Raso, G., Meli, R., Monda, M., Messina, G., Zammit, C., Crispino, M., & Mollica, M. P. (2019). High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Frontiers in Cellular Neuroscience, 13, 509. https://doi.org/10.3389/fncel.2019.00509

Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Research International, 2014, 608979. https://doi.org/10.1155/2014/608979

Chiurchiù, V., Orlacchio, A., & Maccarrone, M. (2016). Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2016, 7909380. https://doi.org/10.1155/2016/7909380

Davis, L. L., & Hamner, M. B. (2024). Post-traumatic stress disorder: the role of the amygdala and potential therapeutic interventions - a review. Frontiers in Psychiatry, 15, 1356563. https://doi.org/10.3389/fpsyt.2024.1356563

Degan, D., Ornello, R., Tiseo, C., Carolei, A., Sacco, S., & Pistoia, F. (2018). The Role of Inflammation in Neurological Disorders. Current Pharmaceutical Design, 24(14), 1485–1501. https://doi.org/10.2174/1381612824666180327170632

Devaraj, S., Wang-Polagruto, J., Polagruto, J., Keen, C. L., & Jialal, I. (2008). High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism: Clinical and Experimental, 57(6), 867–870. https://doi.org/10.1016/j.metabol.2008.02.016

Dias-Carvalho, A., Sá, S. I., Carvalho, F., Fernandes, E., & Costa, V. M. (2024). Inflammation as common link to progressive neurological diseases. Archives of Toxicology, 98(1), 95–119. https://doi.org/10.1007/s00204-023-03628-8

Divnych, A. (2025). Graphical overview of the review targets. Created in BioRender. https://BioRender.com/y65k654

Divnych, A. (2025). Overview of key affected brain regions in mice and humans at neurological disorders. Created in BioRender. https://BioRender.com/u89a631

Divnych, A. (2025). Cellular damage induced by reactive oxygen species. Created in BioRender. https://BioRender.com/f02s325

Divnych, A. (2025). The neuroinflammatory process. Created in BioRender. https://BioRender.com/r90s996

Dmytriv, T. R., Tsiumpala, S. A., Semchyshyn, H. M., Storey, K. B., & Lushchak, V. I. (2023). Mitochondrial dysfunction as a possible trigger of neuroinflammation at post-traumatic stress disorder (PTSD). Frontiers in Physiology, 14, 1222826. https://doi.org/10.3389/fphys.2023.1222826

Domanskyi, A., & Parlato, R. (2022). Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel, Switzerland), 11(3), 504. https://doi.org/10.3390/antiox11030504

Ekstrand, M. I., & Galter, D. (2009). The MitoPark Mouse – An animal model of Parkinson’s disease with impaired respiratory chain function in dopamine neurons. Parkinsonism & Related Disorders, 15, S185–S188. https://doi.org/10.1016/s1353-8020(09)70811-9

Elder, G. A., Gama Sosa, M. A., & de Gasperi, R. (2010). Transgenic mouse models of Alzheimer’s disease. The Mount Sinai Journal of Medicine, New York, 77(1), 69–81. https://doi.org/10.1002/msj.20159

Fornari Laurindo, L., Aparecido Dias, J., Cressoni Araújo, A., Torres Pomini, K., Machado Galhardi, C., Rucco Penteado Detregiachi, C., Santos de Argollo Haber, L., Donizeti Roque, D., Dib Bechara, M., Vialogo Marques de Castro, M., de Souza Bastos Mazuqueli Pereira, E., José Tofano, R., Jasmin Santos German Borgo, I., & Maria Barbalho, S. (2024). Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Frontiers in Immunology, 14, 1305933. https://doi.org/10.3389/fimmu.2023.1305933

Gao, G., You, L., Zhang, J., Chang, Y.-Z., & Yu, P. (2023). Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel, Switzerland), 12(6), 1289. https://doi.org/10.3390/antiox12061289

Gregersen, S., Samocha-Bonet, D., Heilbronn, L. K., & Campbell, L. v. (2012). Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans. Journal of Nutrition and Metabolism, 2012, 238056. https://doi.org/10.1155/2012/238056

Hassan, W., Noreen, H., Rehman, S., Kamal, M. A., & da Rocha, J. B. T. (2022). Association of Oxidative Stress with Neurological Disorders. Current Neuropharmacology, 20(6), 1046–1072. https://doi.org/10.2174/1570159X19666211111141246

Hyder, F., Rothman, D. L., & Bennett, M. R. (2013). Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3549–3554. https://doi.org/10.1073/pnas.1214912110

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642

Koellhoffer, E. C., McCullough, L. D., & Ritzel, R. M. (2017). Old Maids: Aging and Its Impact on Microglia Function. International Journal of Molecular Sciences, 18(4), 769. https://doi.org/10.3390/ijms18040769

Koh, S., Dupuis, N., & Auvin, S. (2020). Ketogenic diet and Neuroinflammation. Epilepsy Research, 167, 106454. https://doi.org/10.1016/j.eplepsyres.2020.106454

Kumar, V., Khan, A. A., Tripathi, A., Dixit, P. K., & Bajaj, U. K. (2015). Role of oxidative stress in various diseases: Relevance of dietary antioxidants. The Journal of Phytopharmacology, 4(2), 126–132. https://doi.org/10.31254/phyto.2015.4213

Kurowska, A., Ziemichód, W., Herbet, M., & Piątkowska-Chmiel, I. (2023). The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients, 15(6), 1436. https://doi.org/10.3390/nu15061436

Lassmann, H., & van Horssen, J. (2016). Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(3), 506–510. https://doi.org/10.1016/j.bbadis.2015.09.018

Lee, K. H., Cha, M., & Lee, B. H. (2020). Neuroprotective Effect of Antioxidants in the Brain. International Journal of Molecular Sciences, 21(19), 7152. https://doi.org/10.3390/ijms21197152

Lee, K. H., Cha, M., & Lee, B. H. (2021). Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. International Journal of Molecular Sciences, 22(24), 13315. https://doi.org/10.3390/ijms222413315

Levings, D. C., Pathak, S. S., Yang, Y.-M., & Slattery, M. (2023). Limited Expression of Nrf2 in Neurons Across the Central Nervous System. BioRxiv : The Preprint Server for Biology, 2023.05.09.540014. https://doi.org/10.1101/2023.05.09.540014

Lushchak, O., Strilbytska, O., Koliada, A., & Storey, K. B. (2023). An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder. Frontiers in Physiology, 13, 1094076. https://doi.org/10.3389/fphys.2022.1094076

Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016

Lushchak, V. I., Duszenko, M., Gospodaryov, D. v, & Garaschuk, O. (2021). Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel, Switzerland), 10(11), 1715. https://doi.org/10.3390/antiox10111715

Magen, I., & Chesselet, M.-F. (2010). Genetic mouse models of Parkinson’s disease (pp. 53–87). https://doi.org/10.1016/S0079-6123(10)84004-X

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201

Morales, I., Guzmán-Martínez, L., Cerda-Troncoso, C., Farías, G. A., & Maccioni, R. B. (2014). Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Frontiers in Cellular Neuroscience, 8, 112. https://doi.org/10.3389/fncel.2014.00112

Mukherjee, S., Ali, S., Hashmi, S., & Jahan, S. (2023). History, Origin and Types of Neurological Disorders. In Applications of Stem Cells and derived Exosomes in Neurodegenerative Disorders (pp. 1–32). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3848-3_1

Ozgen, S., Krigman, J., Zhang, R., & Sun, N. (2022). Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regeneration Research, 17(4), 741. https://doi.org/10.4103/1673-5374.322429

Pajares, M., I Rojo, A., Manda, G., Boscá, L., & Cuadrado, A. (2020). Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells, 9(7), 1687. https://doi.org/10.3390/cells9071687

Potashkin, J. A., Blume, S. R., & Runkle, N. K. (2010). Limitations of animal models of Parkinson’s disease. Parkinson’s Disease, 2011, 658083. https://doi.org/10.4061/2011/658083

Procaccini, C., de Rosa, V., Pucino, V., Formisano, L., & Matarese, G. (2015). Animal models of Multiple Sclerosis. European Journal of Pharmacology, 759, 182–191. https://doi.org/10.1016/j.ejphar.2015.03.042

Quarantelli, M. (2015). MRI/MRS in neuroinflammation: methodology and applications. Clinical and Translational Imaging, 3(6), 475–489. https://doi.org/10.1007/s40336-015-0142-y

Rattan, S. I. S. (2008). Hormesis in aging. Ageing Research Reviews, 7(1), 63–78. https://doi.org/10.1016/j.arr.2007.03.002

Ribeiro, L. C., Rodrigues, L., Quincozes-Santos, A., Tramontina, A. C., Bambini-Junior, V., Zanotto, C., Diehl, L. A., Biasibetti, R., Kleinkauf-Rocha, J., Dalmaz, C., Goncalves, C.-A., & Gottfried, C. (2012). Caloric restriction improves basal redox parameters in hippocampus and cerebral cortex of Wistar rats. Brain Research, 1472, 11–19. https://doi.org/10.1016/j.brainres.2012.07.021

Salganik, R. I. (2001). The Benefits and Hazards of Antioxidants: Controlling Apoptosis and Other Protective Mechanisms in Cancer Patients and the Human Population. Journal of the American College of Nutrition, 20(sup5), 464S-472S. https://doi.org/10.1080/07315724.2001.10719185

Santibáñez-Andrade, M., Quezada-Maldonado, E. M., Rivera-Pineda, A., Chirino, Y. I., García-Cuellar, C. M., & Sánchez-Pérez, Y. (2023). The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. International Journal of Molecular Sciences, 24(2), 1782. https://doi.org/10.3390/ijms24021782

Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106–107, 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

Skaper, S. D., Facci, L., Zusso, M., & Giusti, P. (2018). An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Frontiers in Cellular Neuroscience, 12, 72. https://doi.org/10.3389/fncel.2018.00072

Sousa, J. S., D’Imprima, E., & Vonck, J. (2018). Mitochondrial Respiratory Chain Complexes (pp. 167–227). https://doi.org/10.1007/978-981-10-7757-9_7

Steinmetz, J. D., Seeher, K. M., Schiess, N., Nichols, E., Cao, B., Servili, C., Cavallera, V., Cousin, E., Hagins, H., Moberg, M. E., Mehlman, M. L., Abate, Y. H., Abbas, J., Abbasi, M. A., Abbasian, M., Abbastabar, H., Abdelmasseh, M., Abdollahi, M., Abdollahi, M., … Dua, T. (2024). Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23(4), 344–381. https://doi.org/10.1016/S1474-4422(24)00038-3

Swaminathan, A., & Jicha, G. A. (2014). Nutrition and prevention of Alzheimer’s dementia. Frontiers in Aging Neuroscience, 6, 282. https://doi.org/10.3389/fnagi.2014.00282

Tamura, Y., Yamato, M., & Kataoka, Y. (2022). Animal Models for Neuroinflammation and Potential Treatment Methods. Frontiers in Neurology, 13, 890217. https://doi.org/10.3389/fneur.2022.890217

Tavares, W. M., Araujo de França, S., Paiva, W. S., & Teixeira, M. J. (2023). Early tracheostomy versus late tracheostomy in severe traumatic brain injury or stroke: A systematic review and meta-analysis. Australian Critical Care, 36(6), 1110–1116. https://doi.org/10.1016/j.aucc.2022.12.012

Tello, J. A., Williams, H. E., Eppler, R. M., Steinhilb, M. L., & Khanna, M. (2022). Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Frontiers in Molecular Neuroscience, 15, 883358. https://doi.org/10.3389/fnmol.2022.883358

Uttara, B., Singh, A. v, Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823

Vetrani, C., Costabile, G., di Marino, L., & Rivellese, A. A. (2012). Nutrition and oxidative stress: a systematic review of human studies. International Journal of Food Sciences and Nutrition, 64(3), 312–326. https://doi.org/10.3109/09637486.2012.738651

Żebrowska, E., Maciejczyk, M., Żendzian-Piotrowska, M., Zalewska, A., & Chabowski, A. (2019). High Protein Diet Induces Oxidative Stress in Rat Cerebral Cortex and Hypothalamus. International Journal of Molecular Sciences, 20(7), 1547. https://doi.org/10.3390/ijms20071547

Downloads

Published

2024-12-29

How to Cite

Divnych, A., & Lushchak, V. (2024). Nutritional Interventions in Neurological Pathologies: Targeting Inflammation and Oxidative Stress. Journal of Vasyl Stefanyk Precarpathian National University. Biology, 11, 44–56. https://doi.org/10.15330/jpnubio.11.44-56

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.