On hereditary irreducibility of some monomial matrices over local rings

Authors

  • A.A. Tylyshchak Uzhhorod National University, 3 Narodna sq., Uzhhorod, Ukraine https://orcid.org/0000-0001-7828-3416
  • M. Demko University of Presov, 1 November 17 str., 08116, Presov, Slovakia
https://doi.org/10.15330/cmp.13.1.127-133

Keywords:

local ring, Jacobson radical, irreducible matrix, monomial matrix, hereditary irreducible matrix
Published online: 2021-06-19

Abstract

We consider monomial matrices over a commutative local principal ideal ring R of type M(t,k,n)=Φ(Ik00tInk), 0<k<n, where t is a generating element of Jacobson radical J(R) of R, Φ is the companion matrix to λn1 and Ik is the identity k×k matrix. In this paper, we indicate a criterion of the hereditary irreducibility of M(t,k,n) in the case t[k(nk)n]+10.

How to Cite
(1)
Tylyshchak, A.; Demko, M. On Hereditary Irreducibility of Some Monomial Matrices over Local Rings. Carpathian Math. Publ. 2021, 13, 127-133.