References

  1. Alikhani-Koopaei A. Equi-Baire one family of functions on metric spaces: A generalization of equi-continuity; and some applications. Topology Appl. 2020, 277, 107170. doi:10.1016/j.topol.2020.107170
  2. Alikhani-Koopaei A. On dynamics of families of equi-Baire one functions on metric spaces. Topology Appl. 2022, 322 (3), 108267. doi:10.1016/j.topol.2022.108267
  3. Balcerzak M., Holá L., Holý D. Properties of equi-Baire 1 and equi-Lebesgue families of functions. arXiv:2304.07824. doi:10.48550/arXiv.2304.07824
  4. Balcerzak M., Karlova O., Szuca P. Equi-Baire 1 families of functions. Topology Appl. 2022, 305, 107900. doi:10.1016/j.topol.2021.107900
  5. Engelking R. General Topology. Heldermann Verlag, Berlin, 1989.
  6. Kalenda O.F.K., Spurný J. Extending Baire-one functions on topological spaces. Topology Appl. 2005, 149, 195–216. doi:10.1016/J.TOPOL.2004.09.007
  7. Karlova O. The decomposable and the ambiguous sets. Carpathian Math. Publ. 2011, 3 (2), 71–76. (in Ukrainian)
  8. Karlova O. On \(\alpha\)-embedded sets and extension of mappings. Comment. Math. Univ. Carolin. 2013, 54 (3), 377–396.
  9. Koumoullis G. A generalization of functions of the first class. Topology Appl. 1993, 50, 217–239.
  10. Kuratowski K. Topology, vol. 1. Elsevier, Wasrzawa, 1966.
  11. Lebesgue H. Sur les fonctions représentables analytiqment. J. Math. Pures Appl. (9) 1905, 1, 139–216.
  12. Lecomte D. How can we recover Baire class one functions? Mathematika 2003, 50 (1–2), 171–198. doi:10.1112/S0025579300014881
  13. Lee P.Y., Tang W.-K., Zhao D. An equivalent definition of functions of the first Baire class. Proc. Amer. Math. Soc. 2001, 129 (8), 2273–2275. doi:10.1090/S0002-9939-00-05826-3