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Extension property for equi-Lebesgue families of functions

Karlova O.1,2

Let X be a topological space and (Y, d) be a complete separable metric space. For a family F of

functions from X to Y we say that F is equi-Lebesgue if for every ε > 0 there is a cover (Fn) of X

consisting of closed sets such that diam f (Fn) ≤ ε for all n ∈ N and f ∈ F .

We prove that if X is a perfectly normal space, Y is a complete separable metric space and E ⊆ X

is an arbitrary set, then every equi-continuous family F ⊆ YE can be extended to an equi-Lebesgue

family G ⊆ YX.
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1 Introduction

Recall that a function f : X → Y between topological spaces X and Y is

(i) Baire 1, if f is a pointwise limit of a sequence of continuous functions fn : X → Y;

(ii) Borel 1 or Fσ-measurable, if for each open set V ⊆ Y the preimage f−1(V) is Fσ in X.

We will denote by B1(X, Y) and B1(X, Y) the collections of all Baire 1 and Borel 1 functions,

respectively.

It is well-known that for a perfectly normal (in particular, metric) topological space X and

for a metric space Y every Baire 1 function is Fσ-measurable; moreover, for Y = R these two no-

tions are equivalent [10]. But B1(X, Y) 6⊆ B1(X, Y) even for metric complete separable spaces

X and Y as the following simple example shows: χ{0} ∈ B1(R, R) \ B1(R, R).

Many authors use the term Baire 1 for functions between topological spaces in the sense of

Fσ-measurable function. We prefer to use notion Borel 1 instead of Baire 1 in such cases and

throughout the paper we will cite results of other authors using this terminology.

In 2001, P.Y. Lee, W.-K. Tang and D. Zhao [13] obtained the following ε-δ characterization

of Borel 1 functions.
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Theorem 1. Let (X, dX) be a separable metric space and (Y, dY) be a complete separable metric

space. A function f : X → Y is Borel 1 if and only if for each ε > 0 there exists a function

δ
f
ε : X → (0,+∞) such that for all x, x′ ∈ X we have

dX

(

x, x′
)

< min
{

δ
f
ε (x), δ

f
ε

(

x′
)

}

=⇒ dY

(

f (x), f
(

x′
) )

≤ ε. (1)

Motivated by this characterization, D. Lecomte [12] introduced the notion of equi-Baire 1

family of functions, which was rediscovered later by A. Alikhani-Koopaei [1]. Namely, a family

F of functions from X to Y is said to be equi-Baire 1 if for each ε > 0 there exists a function

δε : X → (0,+∞) such that for all f ∈ F and x, x′ ∈ X condition (1) holds.

D. Lecomte [12, Proposition 32] obtained the following characterization of equi-Baire 1

families.

Theorem 2. Let (X, dX) be a separable metric space and (Y, dY) be a complete separable metric

space. For a family F of functions from X to Y the following conditions are equivalent:

(i) F is equi-Baire 1;

(ii) for every ε > 0 there is a cover (Fn) of X consisting of closed sets such that

diam f (Fn) ≤ ε

for all n ∈ N and f ∈ F ;

(iii) there is a finer metrizable separable topology on X making F equi-continuous;

(iv) for every nonempty closed subset F of X there is a point x such that the family
{

f |F : f ∈ F
}

is equi-continuous at x.

Properties of equi-Baire 1 families of functions and its applications for dynamic systems

were studied recently in [1–4].

In [3], the authors introduced equi-Lebesgue families of functions as families with property

(ii) from Theorem 2. One of the main results of [3] deals with an extension property of

equi-Lebesgue families.

Theorem 3 ([3, Theorem 6.1]). Let (X, dX) be a separable metric space and (Y, dY) be a sepa-

rable complete metric space. Let H ⊂ X be a nonempty Gδ-set and F be an equi-continuous

family of functions from H to (Y, dY). Then all functions in F can be extended to an

equi-Baire 1 family of functions from X to Y.

The aim of this note is a generalization of Theorem 3. Namely, we prove the following fact.

Theorem 4. Let X be a perfectly normal space, Y be a Polish space and E ⊆ X be an ar-

bitrary set. Then every equi-continuous family F ⊆ YE can be extended to equi-Lebesgue

family G ⊆ YX .

The paper is organized as follows. In Section 2, using standard arguments, we show that

every equi-continuous family F ⊆ YH can be extended to an equi-continuous family G ⊆ YE

for some Gδ-set E ⊇ H in X. Later we consider 1-separated sets in Section 3 and prove that in a

perfectly normal space every hereditarily Baire subset is 1-separated from any disjoint Gδ-set.

This gives a possibility to extend Borel functions from hereditarily Baire subsets of perfectly

normal spaces. We prove this in Section 4. Finally, Section 5 contains the proof of the main

extension theorem of the paper.
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2 Extension of equi-continuous family to a Gδ-set

Let X be a topological space and (Y, d) be a metric space. For a function f : X → Y we

consider the following property:

(LP) for every ε > 0 there is a sequence (Fn) of closed sets in X such that X =
⋃∞

n=1 Fn and

diam f (Fn) < ε for every n ∈ N.

In case X = Y = R, H. Lebesgue proved [11] that the above mentioned condition is equiva-

lent to the inclusion f ∈ B1(X, Y). In [3], this property of a function is called Lebesgue property.

In is known (see [10, §31.II, Theorem 3]), that every function with (LP) is Borel 1, and if Y

is separable, then the inverse implication is true. It was shown in [3], that the condition of

separability on Y is essential.

If a function f between metric spaces X and Y satisfies condition (1), then we will say,

following [3], that f has LTZ-property.

Let us recall that if a single-function family F = { f} has property (iv) of Theorem 2, then

we say that f has the point of continuity property or, briefly, (PCP). Similarly, a family F having

(iv) is called a family with the point of equi-continuity property or (PECP) for short.

Let X be a topological space and (Y, d) be a bounded metric space. For a family F ⊆ YX of

functions we denote by

f ♯
F
(x) =

(

f (x)
)

f∈F

the orbit function f ♯
F

: X → YT , where T = |F |. Assume that Z = YT is equipped with the

supremum metric

̺(z1, z2) = sup
t∈T

d (z1(t), z2(t)) .

Then it is easy to see that the following observation is valid.

Proposition 1. Let X be a topological space and (Y, d) be a bounded metric space. Then

(1) F is equi-continuous at x ∈ X if and only if f ♯
F

: X → (Z, ̺) is continuous at x;

(2) F is equi-Lebesgue if and only if f ♯
F

: X → (Z, ̺) has Lebesgue property;

(3) F has (PECP) if and only if f ♯
F

: X → (Z, ̺) has (PCP);

(4) if X is metric, then F is equi-Baire 1 if and only if f ♯
F

: X → (Z, ̺) has LTZ-property;

Definition 1. Let A ⊆ X. We say that a family G ⊆ YX is an extension of a family F ⊆ YA if for

every f ∈ F there is g ∈ G such that g|A = f .

Let us recall that a topological space is perfect, if every its closed subset is Gδ.

Proposition 2. Let X be a perfect topological space, (Y, d) be a complete bounded metric

space, H ⊆ X be an arbitrary set and F ⊆ YH be an equi-continuous family of functions.

Then F can be extended to an equi-continuous family G ⊆ YE onto a Gδ-set E ⊇ H.

Proof. Let F ⊆ YH be an equi-continuous family of functions F = { ft : t ∈ T}. Then

f ♯
F

: H → (Z, ̺) is continuous on H. Since the space (Z, ̺) is complete, it follows from

[5, 4.3.16] that there exists a continuous extension g : E → (Z, ̺) of f ♯
F

, where E = ω−1
g (0).

Let g(x) = (gt(x))t∈T for each x ∈ E. Then family G = {gt : t ∈ T} is an equi-continuous

extension of F by Proposition 1. Note that the oscillation function ωg : E → R is upper semi-

continuous, consequently, E is closed in X. Moreover, E is a Gδ-subset of a perfect space X.
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3 1-separated sets in a perfectly normal paracompact space

In this section, we deal with a notion of 1-separated subsets which plays crucial role in

extension of Borel 1 functions.

Definition 2. Subsets A and B in a topological space X are called 1-separated, if there exists an

Fσ- and Gδ-set H ⊆ X such that

A ⊆ H ⊆ X \ B.

In this case, we say that H separates A and B.

Remark 1. Let X be a perfectly normal space.

• Definition 2 is equivalent to the definition of 1-separated sets from [8].

• If A and B are disjoint Gδ-subsets of X, then they are 1-separated [10, §30, Theorem 2].

Definition 3. Let us recall that a set A 6= ∅ in a topological space X is reducible (in the sense of

Hausdorff), if for every closed set F 6= ∅ we have

F ∩ A ∩ F \ A 6= F.

Recall that a topological space is hereditarily Baire, if every its closed subset is a Baire space.

Clearly, each open or closed set is reducible. Notice that every reducible subset of a per-

fectly normal paracompact space is Fσ and Gδ simultaneously (see [7, Theorem 1]). Moreover,

if X is hereditarily Baire, the inverse is true [7, Proposition 3.1].

Definition 4. Let D =
{

Dξ : ξ ∈ [0, α]
}

be an ordinal-indexed family of closed subsets of a

topological space X. Family D is said to be regular closed in X, if

(a) D0 = X ⊃ D1 ⊃ · · · ⊃ Dα = ∅;

(b) Dγ =
⋂

ξ<γ Dξ if γ ∈ [0, α] is limit.

By [9, Lemma 2.2] the following property holds.

Proposition 3. Let X be a topological space and A ⊆ X.

The following conditions are equivalent:

1) A is reducible;

2) there exists a regular closed sequence
{

Dξ : ξ ∈ [0, α]
}

such that A =
⋃

ξ∈I

(

Dξ \ Dξ+1

)

for some I ⊆ [0, α].

Lemma 1. Let X be a perfectly normal paracompact space and E ⊆ X be a hereditarily Baire

subspace. Then E is 1-separated from any Gδ-set A ⊆ X disjoint with E.

Proof. Fix an arbitrary Gδ-set A such that A ∩ E = ∅ and assume to the contrary that A and

E are not 1-separated. Notice that A ∩ E 6= ∅, otherwise H = X \ A is Fσ- and Gδ-set which

separates A and E.
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Let β be the first ordinal of the cardinality greater than |X|. We define inductively transfi-

nite sequences of subsets of X by putting F0 = X, A0 = A and E0 = E. Suppose that for some

ordinal number α < β there are already constructed sequences
(

Fξ

)

ξ<α
,
(

Aξ

)

ξ<α
and

(

Eξ

)

ξ<α

of nonempty subsets of X. We put

Fα =







Aα−1 ∩ Eα−1, if α is isolated,
⋂

ξ<α
Fξ , if α is limit, (2)

Aα = A ∩ Fα, Eα = E ∩ Fα. (3)

We show that the set Fα is nonempty. To obtain a contradiction we suppose that Fα = ∅.

Then sequence

X = F0 ⊃ A0 ⊃ F1 ⊃ · · · ⊃ Fξ ⊃ Aξ ⊃ Fξ+1 ⊃ · · · ⊃ Fα = ∅

is regular closed in X. By Proposition 3, the set

H =
⋃

ξ<α

(

Fξ \ Aξ

)

is reducible. Moreover, let us check that

E ⊆ H ⊆ X \ A. (4)

Fix x ∈ E and take ξ < α such that x ∈ Fξ \ Fξ+1. Then x ∈ E ∩ Fξ = Eξ ⊆ Eξ . Since

x 6∈ Fξ+1, x 6∈ Aξ . Hence, x ∈ H.

Now assume x ∈ H and let ξ < α be such that x ∈ Fξ \ Aξ . If x ∈ A, then x ∈ Fξ ∩ A = Aξ ,

a contradiction. Therefore, x ∈ X \ A and (4) is proved. Since X is paracompact, we have

that H is Fσ and Gδ in X. By (4), H separates A and E, which implies a contradiction to our

assumption. Hence, Fα 6= ∅.

Therefore, there is a decreasing sequence (Fα)α<β of nonempty closed subsets of X and

sequences (Aα)α<β, (Eα)α<β of nonempty sets which satisfy (2) and (3) for every α < β.

We put

M =
{

ξ < β : Fξ \ Fξ+1 6= ∅

}

and N =
{

ξ < β : Fξ \ Fξ+1 = ∅

}

.

Take xξ ∈ Fξ \ Fξ+1 for every ξ ∈ M. Notice that all points xξ are distinct. Then

|M| =
∣

∣{xξ : ξ ∈ M}
∣

∣ ≤ |X| < |β| = |M ∪ N|.

Hence, N 6= ∅. Let α = min N. Then Fα = Fα+1 = . . . . Therefore, the equality

Fα = A ∩ Fα ∩ E ∩ Fα

is valid by (2) and (3).

Since E is hereditarily Baire and E ∩ Fα is a closed subset of E, Eα is a Baire space. Notice

that Aα is dense Gδ-subset of Fα. It follows that Fα \ Aα is an Fσ-set of the first category in Fα.

Hence, Eα as a subset of Fα \ Eα is a set of the first category in itself. We obtain a contradiction,

because Eα is a Baire space.

Hence, our assumption is not valid and we have that E and A are 1-separated in X.
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4 Extension of Borel 1 functions and infinitely nice sets

Definition 5. Let X be a topological space. We define E ⊆ X to be (finitely) infinitely nice, if for

any disjoint (finite) infinite sequence (En) of Fσ- and Gδ-subsets of E such that E =
⋃

n
En there

exists a disjoint sequence (Xn) of Fσ- and Gδ-subsets of X such that X =
⋃

n
Xn and Xn ∩ E = En

for every n.

Definition 6. A subset A of a topological space X is B1-embedded in X (B∗
1 -embedded

in X), if every (bounded) Borel 1 function f : E → R can be extended to a (bounded) Borel 1

function g : X → R.

It was proved in [6, Proposition 8] (see also [8, Theorem 5.3] for functions of the α’th Borel

class, α ≥ 1) that for a perfectly normal space X and a subset E ⊆ X the following properties

are equivalent:

(A) E is B1-embedded in X;

(B) E is 1-separated from any Gδ-set A ⊆ X disjoint with E.

Moreover, it was shown in [8, Theorem 7.2], that property (A) implies

(C) E is infinitely nice.

It is worth noting [8, Proposition 5.1] that the property of E to be finitely nice is equivalent to

(A′) E is B∗
1 -embedded in X.

Further, it follows from [8, Theorem 7.3] for α = 1 that properties (A) and (B) for perfectly

normal X are equivalent to the following condition.

(D) For any Polish space Y every Borel 1 function f : E → Y can be extended to a Borel 1

function g : X → Y.

It is find out that property (C) is equivalent to (A). In order to show this we need to prove

the following result.

Proposition 4. Let X be a perfectly normal space and E ⊆ X be infinitely nice. Then E is

B1-embedded in X.

Proof. Let f : E → R be a Borel 1 function. Without loss of generality, we may assume

that f (E) = R.

Fix n ∈ N. Consider a covering {Ik,n : k ∈ Z} of R by open intervals

Ik,n =

(

k − 1

2n+1
,

k + 1

2n+1

)

.

Since f is Borel 1, each set Jk,n = f−1 (Ik,n) is Fσ in E and the family {Jk,n : k ∈ N} covers E.

By Reduction Theorem [10, §30, VII, Theorem 1] there exists a disjoint family {Ek,n : k ∈ N} of

nonempty Fσ- and Gδ-sets in E such that Ek,n ⊆ Jk,n and E =
⋃

k
Ek,n. Since E is infinitely nice,

there exists a disjoint covering {Xk,n : k ∈ N} of X by Fσ- and Gδ-sets such that Xk,n ∩ E = Ek,n.
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For every k, n ∈ N we pick an arbitrary point yk,n ∈ Ik,n. For every x ∈ X we define

fn(x) = yk,n, if x ∈ Xk,n.

It is not hard to verify that fn : X → R is a Borel 1 function. Notice that for every x ∈ E and

for every n ∈ N we have x ∈ El,n+1 for some integer l. By our construction, there exists k ∈ Z

such that El,n+1 ⊆ Ek,n. Hence,

| fn+1(x)− fn(x)| ≤ diam Ik,n =
1

2n

for all n ∈ N and x ∈ E. Now for all x ∈ X we put

gn(x) = max
{

min
{

fn+1(x)− fn(x), 2−n
}

,−2−n
}

.

Then gn : X → R is Borel 1. Since |gn(x)| ≤ 2−n for all x ∈ X, the series
∞

∑
n=1

gn(x) is uniformly

convergent on X to a function, say, g : X → R. Then g is Borel 1 as a sum of uniform convergent

series of Borel 1 functions. Moreover, if x ∈ E and n ∈ N, then gn(x) = fn+1(x)− fn(x) and

n

∑
k=1

gk(x) = fn+1(x)− f1(x).

Moreover,

| fn+1(x)− f (x)| ≤
1

2n
.

Therefore, fn ⇒ f on E. It remains to put

h(x) = g(x) + f1(x)

for every x ∈ X. Hence, h is the required Borel 1 extension of f .

Now we turn our attention to some examples of B1-embedded sets which will be useful in

the next section.

Proposition 5. Let X be a perfectly normal space and E ⊆ X. If one of the following conditions

holds

(i) E is Gδ;

(ii) E is Lindelöf and hereditarily Baire;

(iii) X is paracompact and E is hereditarily Baire,

then E is B1-embedded in X.

Proof. In case (i), condition (B) is evident. In case (ii), E satisfies condition (A) according

to [6, Theorem 13]. Finally, in case (iii), E satisfies (B) by Lemma 1.

Remark that in each of cases (i)–(iii) of Proposition 5 the set E is infinitely nice.
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5 Extension of equi-Lebesgue families

Proposition 6. Let X be a perfectly normal space, E be B1-embedded in X and let Y be a

Polish space. Then every equi-Lebesgue family F ⊆ YE can be extended to an equi-Lebesgue

family G ⊆ YX .

Proof. Fix ε > 0 and consider a sequence (En) of closed sets in E such that E =
⋃∞

n=1 En and

diam f (En) ≤ ε for every f ∈ F and n ∈ N.

Let H1 = E1 and Hn = En \
⋃

k<n
Ek. Since E is perfectly normal, then every Hn is Fσ- and Gδ-

subset of E. Moreover, (Hn) is mutually disjoint sequence and E =
⋃

n
Hn. Since E is infinitely

nice, there exists a disjoint sequence (Xn) of Fσ- and Gδ-subsets of X such that X =
⋃

n
Xn and

Xn ∩ E = Hn for every n ∈ N.

Take f ∈ F . Notice that f is Borel 1 since it has Lebesgue property. For every n we fix

an arbitrary y
f
n ∈ f (Hn). Put g

f
n = f on Hn and gn = yn on E \ Hn. It is easy to see that

g
f
n : E → f (Hn) is Borel 1, since Hn is Fσ and Gδ in E. By property (D) there exists a Borel 1

extension h
f
n : X → f (Hn) of g

f
n. Notice that diam h

f
n(X) ≤ ε. We put

g f (x) = h
f
n(x),

if x ∈ Xn for some n.

Then g f : X → Y is Borel 1 because every Xn is Fσ and Gδ in X. Moreover, g f |E = f and

diam g f (Xn) ≤ ε for every n.

It remains to put

G =
{

g f : f ∈ F

}

.

Remark 2. Notice that we can not use property (D) for orbit function f ♯
F

: E → (Z, ̺), since Z

is not separable in general.

Propositions 5 and 6 imply the following extension theorem.

Theorem 5. Let X be a perfectly normal space, Y be a Polish space and E ⊆ X. If one of the

following conditions hold

(i) E is Gδ;

(ii) E is Lindelöf and hereditarily Baire;

(iii) X is paracompact and E is hereditarily Baire,

then every equi-Lebesgue family F ⊆ YE can be extended to an equi-Lebesgue family G ⊆ YX .

Combining Proposition 2 and Theorem 5 (i), we obtain the main result.

Theorem 6. Let X be a perfectly normal space, Y be a Polish space and E ⊆ X be an ar-

bitrary set. Then every equi-continuous family F ⊆ YE can be extended to equi-Lebesgue

family G ⊆ YX .
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Нехай X — топологiчний простiр i (Y, d) — повний метричний сепарабельний простiр.

Сiм’ю F функцiй з X в Y ми називаємо одностайно лебеґовою, якщо для кожного ε > 0 iснує

таке покриття (Fn) простору X, яке складається iз замкнених множин, що diam f (Fn) ≤ ε для

всiх n ∈ N та f ∈ F .

Ми доводимо, що для досконало нормального простору X, повного метричного сепара-

бельного простору Y та довiльної пiдмножини E ⊆ X кожну одностайно неперервну сiм’ю

функцiй F ⊆ YE можна продовжити до одностайно лебеґової сiм’ї G ⊆ YX.

Ключовi слова i фрази: продовження функцiй першого класу Бореля, одностайно берiвська

сiм’я функцiй, одонстайно лебеґова сiм’я функцiй, 1-вiдокремна множина, метризовний про-

стiр, топологiчний простiр.


