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Extension property for equi-Lebesgue families of functions

Karlova O.12

Let X be a topological space and (Y, d) be a complete separable metric space. For a family .# of
functions from X to Y we say that .% is equi-Lebesgue if for every ¢ > 0 there is a cover (F;) of X
consisting of closed sets such that diam f(F,) < eforalln € Nand f € .%.

We prove that if X is a perfectly normal space, Y is a complete separable metric space and E C X
is an arbitrary set, then every equi-continuous family .# C Y can be extended to an equi-Lebesgue
family ¥ C YX.
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1 Introduction

Recall that a function f : X — Y between topological spaces X and Y is
(i) Baire1,if f is a pointwise limit of a sequence of continuous functions f, : X = Y;
(ii) Borel 1 or F,-measurable, if for each open set V C Y the preimage f~1(V) is F, in X.

We will denote by B1(X, Y) and % (X, Y) the collections of all Baire 1 and Borel 1 functions,
respectively.

It is well-known that for a perfectly normal (in particular, metric) topological space X and
for a metric space Y every Baire 1 function is F,-measurable; moreover, for Y = IR these two no-
tions are equivalent [10]. But %;(X,Y) Z B1(X,Y) even for metric complete separable spaces
X and Y as the following simple example shows: x (0} € %1(R,R) \ B1(R, R).

Many authors use the term Baire 1 for functions between topological spaces in the sense of
Fr-measurable function. We prefer to use notion Borel 1 instead of Baire 1 in such cases and
throughout the paper we will cite results of other authors using this terminology.

In 2001, PY. Lee, W.-K. Tang and D. Zhao [13] obtained the following e- characterization
of Borel 1 functions.
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Theorem 1. Let (X, dx) be a separable metric space and (Y, dy) be a complete separable metric
space. A function f: X — Y is Borel 1 if and only if for each ¢ > 0 there exists a function

5 X - (0, +00) such that for all x, x' € X we have

dx (x,x') < min {ol(x),6] (+)} = dv(f(x),f (v)) <e (1)
Motivated by this characterization, D. Lecomte [12] introduced the notion of equi-Baire 1
family of functions, which was rediscovered later by A. Alikhani-Koopaei [1]. Namely, a family
# of functions from X to Y is said to be equi-Baire 1 if for each ¢ > 0 there exists a function
Je: X — (0, +00) such that for all f € .% and x,x’ € X condition (1) holds.
D. Lecomte [12, Proposition 32] obtained the following characterization of equi-Baire 1
families.

Theorem 2. Let (X, dx) be a separable metric space and (Y, dy) be a complete separable metric
space. For a family .# of functions from X to Y the following conditions are equivalent:

(i) .# is equi-Baire 1;

(ii) for every € > 0 there is a cover (F,) of X consisting of closed sets such that
diam f (F,) < ¢
foralln € Nand f € .%;

(iii) there is a finer metrizable separable topology on X making .% equi-continuous;

(iv) for every nonempty closed subset F of X there is a point x such that the family

{fle:feF}

is equi-continuous at x.

Properties of equi-Baire 1 families of functions and its applications for dynamic systems
were studied recently in [1-4].

In [3], the authors introduced equi-Lebesgue families of functions as families with property
(ii)) from Theorem 2. One of the main results of [3] deals with an extension property of
equi-Lebesgue families.

Theorem 3 ([3, Theorem 6.1]). Let (X,dx) be a separable metric space and (Y, dy) be a sepa-
rable complete metric space. Let H C X be a nonempty G;-set and .# be an equi-continuous
family of functions from H to (Y,dy). Then all functions in .# can be extended to an
equi-Baire 1 family of functions from X to Y.

The aim of this note is a generalization of Theorem 3. Namely, we prove the following fact.

Theorem 4. Let X be a perfectly normal space, Y be a Polish space and E C X be an ar-
bitrary set. Then every equi-continuous family % C YE can be extended to equi-Lebesgue
family ¢ C YX.

The paper is organized as follows. In Section 2, using standard arguments, we show that
every equi-continuous family .# C YH can be extended to an equi-continuous family ¥ C Y
for some Gs-set E O H in X. Later we consider 1-separated sets in Section 3 and prove thatin a
perfectly normal space every hereditarily Baire subset is 1-separated from any disjoint Gs-set.
This gives a possibility to extend Borel functions from hereditarily Baire subsets of perfectly
normal spaces. We prove this in Section 4. Finally, Section 5 contains the proof of the main
extension theorem of the paper.



Extension property for equi-Lebesgue families of functions 7

2 Extension of equi-continuous family to a G;-set

Let X be a topological space and (Y, d) be a metric space. For a function f : X — Y we
consider the following property:

(LP) for every ¢ > 0 there is a sequence (F,) of closed sets in X such that X = |J;._; F, and
diam f (F,;) < € for every n € IN.

Incase X = Y = IR, H. Lebesgue proved [11] that the above mentioned condition is equiva-
lent to the inclusion f € %;(X,Y). In [3], this property of a function is called Lebesgue property.

In is known (see [10, §3L.II, Theorem 3]), that every function with (LP) is Borel 1, and if Y
is separable, then the inverse implication is true. It was shown in [3], that the condition of
separability on Y is essential.

If a function f between metric spaces X and Y satisfies condition (1), then we will say,
following [3], that f has LTZ-property.

Let us recall that if a single-function family .# = {f} has property (iv) of Theorem 2, then
we say that f has the point of continuity property or, briefly, (PCP). Similarly, a family .# having
(iv) is called a family with the point of equi-continuity property or (PECP) for short.

Let X be a topological space and (Y, d) be a bounded metric space. For a family .# C YX of
functions we denote by

f5 ) = (f(®) e s

the orbit function fﬁ; : X — YT, where T = |.#|. Assume that Z = YT is equipped with the
supremum metric

0(z1,22) = ngd (z1(t),z2(t)) -

Then it is easy to see that the following observation is valid.
Proposition 1. Let X be a topological space and (Y, d) be a bounded metric space. Then

(1) .7 is equi-continuous at x € X if and only ifﬁg} : X — (Z, 0) is continuous at x;
(2) .7 is equi-Lebesgue if and only if ff@ : X = (Z, 0) has Lebesgue property;
(3) # has (PECP) if and only ifﬁg} : X — (Z, 0) has (PCP);

(4) if X is metric, then .% is equi-Baire 1 if and only if ff@ : X = (Z, 0) has LTZ-property;

Definition 1. Let A C X. We say that a family ¥ C YX is an extension of a family .F C YA if for
every f € .7 thereis g € ¢ such thatg|s = f.

Let us recall that a topological space is perfect, if every its closed subset is G;.

Proposition 2. Let X be a perfect topological space, (Y,d) be a complete bounded metric
space, H C X be an arbitrary set and .# C YH be an equi-continuous family of functions.
Then .Z can be extended to an equi-continuous family 4 C YF onto a Gs-set E D H.

Proof. Let # C Y be an equi-continuous family of functions .# = {f;:t € T}. Then

ff@ : H — (Z,0) is continuous on H. Since the space (Z, o) is complete, it follows from
[5, 4.3.16] that there exists a continuous extension g : E — (Z, 0) of fﬁ;, where E = wy L(0).
Let g(x) = (gt(x))er for each x € E. Then family ¢ = {g;:t € T} is an equi-continuous
extension of .# by Proposition 1. Note that the oscillation function wg : E — R is upper semi-

continuous, consequently, E is closed in X. Moreover, E is a Gs-subset of a perfect space X. [
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3 1-separated sets in a perfectly normal paracompact space

In this section, we deal with a notion of 1-separated subsets which plays crucial role in
extension of Borel 1 functions.

Definition 2. Subsets A and B in a topological space X are called 1-separated, if there exists an
F;- and Gs-set H C X such that
ACHCX\B.

In this case, we say that H separates A and B.
Remark 1. Let X be a perfectly normal space.
* Definition 2 is equivalent to the definition of 1-separated sets from [8].
e If A and B are disjoint Gs-subsets of X, then they are 1-separated [10, §30, Theorem 2].

Definition 3. Let us recall that a set A # @ in a topological space X is reducible (in the sense of
Hausdorff), if for every closed set F # & we have

FNANF\A#F.

Recall that a topological space is hereditarily Baire, if every its closed subset is a Baire space.

Clearly, each open or closed set is reducible. Notice that every reducible subset of a per-
fectly normal paracompact space is F, and G; simultaneously (see [7, Theorem 1]). Moreover,
if X is hereditarily Baire, the inverse is true [7, Proposition 3.1].

Definition 4. Let 2 = {D¢ : { € [0,a]} be an ordinal-indexed family of closed subsets of a
topological space X. Family & is said to be regular closed in X, if

(@ D=XD>D1D---DD,=09;
(b) Dy = Nz<n D¢ if v € [0,a] is limit.
By [9, Lemma 2.2] the following property holds.

Proposition 3. Let X be a topological space and A C X.
The following conditions are equivalent:

1) A is reducible;

2) there exists a regular closed sequence {D¢ : ¢ € [0,a]} such that A = Uger (D¢ \ D)
for some I C [0, «].

Lemma 1. Let X be a perfectly normal paracompact space and E C X be a hereditarily Baire
subspace. Then E is 1-separated from any Gs-set A C X disjoint with E.

Proof. Fix an arbitrary Gs-set A such that AN E = & and assume to the contrary that A and
E are not 1-separated. Notice that ANE # @, otherwise H = X \ A is F,- and Gs-set which
separates A and E.
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Let B be the first ordinal of the cardinality greater than | X|. We define inductively transfi-
nite sequences of subsets of X by putting Fy = X, Ag = A and Ey = E. Suppose that for some
ordinal number a < p there are already constructed sequences (F)._,, (A¢) s, and (E¢):_,
of nonempty subsets of X. We put

Ay,_1NE,_q1, if a isisolated,
k=4 NEF, if « is limit, (2)
c<w

A[x:AmFa, Elx:EmFa. (3)

We show that the set F, is nonempty. To obtain a contradiction we suppose that F, = &.
Then sequence

X=FRD>ADFD> - DFDA:DFy1 D DR=0

is regular closed in X. By Proposition 3, the set

H=]J (F\4)

f<w

is reducible. Moreover, let us check that
ECHCX\A. (4)

Fix x € E and take { < a such that x € Fz\ Fry1. Then x € ENF; = Ez C Eg. Since
x & Fzy1,x € Az. Hence, x € H.

Now assume x € H and let ¢ < a be such that x € Fz \ Az Ifx € A,thenx € FFNA = Ag,
a contradiction. Therefore, x € X \ A and (4) is proved. Since X is paracompact, we have
that H is F, and Gs in X. By (4), H separates A and E, which implies a contradiction to our
assumption. Hence, F, # @.

Therefore, there is a decreasing sequence (Fy), p of nonempty closed subsets of X and
sequences (Ay) (Ex) q<p of nonempty sets which satisfy (2) and (3) for every a < B.

We put

a<p’

M={¢<B:F\Fu#0} and N={E<B:F\Fy=0}.
Take xz € Fz \ Fz11 for every ¢ € M. Notice that all points x; are distinct. Then
M| = [{xg: ¢ € M} <[X| < [B] = [MUN].

Hence, N # &. Leta = minN. Then F, = F,1 1 = ... . Therefore, the equality

FlX:AmFamEmF[X

is valid by (2) and (3).

Since E is hereditarily Baire and E N F, is a closed subset of E, E, is a Baire space. Notice
that A, is dense Gs-subset of F,. It follows that F, \ A, is an Fy-set of the first category in F,.
Hence, E, as a subset of F, \ E, is a set of the first category in itself. We obtain a contradiction,
because E, is a Baire space.

Hence, our assumption is not valid and we have that E and A are 1-separated in X. O
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4 Extension of Borel 1 functions and infinitely nice sets

Definition 5. Let X be a topological space. We define E C X to be (finitely) infinitely nice, if for
any disjoint (finite) infinite sequence (E,) of F,- and Gs-subsets of E such that E = |J E,, there
n

exists a disjoint sequence (X, ) of Fy- and Gs-subsets of X such that X = |J X, and X, NE = E,
n

for every n.

Definition 6. A subset A of a topological space X is %-embedded in X (#;-embedded
in X), if every (bounded) Borel 1 function f : E — R can be extended to a (bounded) Borel 1
function g : X — R.

It was proved in [6, Proposition 8] (see also [8, Theorem 5.3] for functions of the a’th Borel
class, « > 1) that for a perfectly normal space X and a subset E C X the following properties
are equivalent:

(A) Eis #;-embedded in X;
(B) E is 1-separated from any Gs-set A C X disjoint with E.
Moreover, it was shown in [8, Theorem 7.2], that property (A) implies
(C) E isinfinitely nice.
It is worth noting [8, Proposition 5.1] that the property of E to be finitely nice is equivalent to
(A") Eis #;-embedded in X.

Further, it follows from [8, Theorem 7.3] for « = 1 that properties (A) and (B) for perfectly
normal X are equivalent to the following condition.

(D) For any Polish space Y every Borel 1 function f : E — Y can be extended to a Borel 1
functiong : X — Y.

It is find out that property (C) is equivalent to (A). In order to show this we need to prove
the following result.

Proposition 4. Let X be a perfectly normal space and E C X be infinitely nice. Then E is
% -embedded in X.

Proof. Let f : E — R be a Borel 1 function. Without loss of generality, we may assume
that f(E) = R.
Fix n € IN. Consider a covering {Ij , : k € Z} of R by open intervals

(k=1 k+1
lon =\ vt a1 ) -

Since f is Borel 1, each set Ji, = f ! (It ) is F, in E and the family {J , : k € N} covers E.
By Reduction Theorem [10, §30, VII, Theorem 1] there exists a disjoint family {Ej , : k € IN} of
nonempty F,- and Ggs-sets in E such that Ey,, C [, and E = |J Ey . Since E is infinitely nice,

k

there exists a disjoint covering { Xy , : k € IN} of X by F,- and Gs-sets such that Xy , NE = Ej .
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For every k,n € IN we pick an arbitrary point y , € I ,. For every x € X we define

fn (X) = Yk if x € Xk,n-

It is not hard to verify that f,, : X — R is a Borel 1 function. Notice that for every x € E and
for every n € IN we have x € E; 1 for some integer /. By our construction, there exists k € Z
such that E; ,, 1 C Ey ,,. Hence,

) 1
e (6) = ful(x)| < diam Iy, = o

foralln € N and x € E. Now for all x € X we put
gn(x) = max { min { f,41(x) - }

Then g, : X — R is Borel 1. Since |g,(x)| < 27" for all x € X, the series Z gn(x) is uniformly

convergent on X to a function, say, ¢ : X — R. Then g is Borel 1 as a sum of umform convergent
series of Borel 1 functions. Moreover, if x € E and n € IN, then g,,(x) = f,4+1(x) — fu(x) and

ki:lgk(x) = fur1(x) — f1(x).

Moreover,
1
fas(x) = F)] < o
Therefore, f, = f on E. It remains to put
h(x) = g(x) + fi(x)
for every x € X. Hence, h is the required Borel 1 extension of f. O

Now we turn our attention to some examples of #;-embedded sets which will be useful in
the next section.

Proposition 5. Let X be a perfectly normal space and E C X. If one of the following conditions
holds

(i) E is Gs;
(ii) E is Lindelof and hereditarily Baire;
(iii) X is paracompact and E is hereditarily Baire,
then E is %-embedded in X.

Proof. In case (i), condition (B) is evident. In case (ii), E satisfies condition (A) according
to [6, Theorem 13]. Finally, in case (iii), E satisfies (B) by Lemma 1. O

Remark that in each of cases (i)—(iii) of Proposition 5 the set E is infinitely nice.
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5 Extension of equi-Lebesgue families

Proposition 6. Let X be a perfectly normal space, E be %;-embedded in X and let Y be a
Polish space. Then every equi-Lebesgue family # C YF can be extended to an equi-Lebesgue
tamily ¢ C YX,

Proof. Fix ¢ > 0 and consider a sequence (E;) of closed sets in E such that E = {J;_; E; and
diam f (E,) < eforevery f € .# and n € IN.

Let H = Ey and H, = E, \ U E;. Since E is perfectly normal, then every Hy, is F,- and G-
k<n
subset of E. Moreover, (H,) is mutually disjoint sequence and E = |J Hy,. Since E is infinitely
n
nice, there exists a disjoint sequence (Xj,) of F,- and Gs-subsets of X such that X = |J X, and

n
Xy NE = Hy, for every n € IN.

Take f € F. Notice that f is Borel 1 since it has Lebesgue property. For every n we fix
an arbitrary y£ € f(H,). Put gﬂnr = fon H, and g, = y, on E \ Hy. It is easy to see that
g,f7 : E — f (Hy) is Borel 1, since Hy, is F, and G, in E. By property (D) there exists a Borel 1
extension 1}, : X — f (Hy) of g£ . Notice that diam hz(X) < e. We put

gl (x) = K (),

if x € X, for some n.

Then gf : X — Y is Borel 1 because every X, is F, and Gs in X. Moreover, ¢f|r = f and
diam ¢/ (X,,) < e for every n.

It remains to put

g ={sf:fe7}.
O

Remark 2. Notice that we can not use property (D) for orbit function fﬁ; :E— (Z,0),since Z
is not separable in general.

Propositions 5 and 6 imply the following extension theorem.

Theorem 5. Let X be a perfectly normal space, Y be a Polish space and E C X. If one of the
following conditions hold

(i) E is Gs;
(ii) E is Lindelof and hereditarily Baire;
(iii) X is paracompact and E is hereditarily Baire,
then every equi-Lebesgue family % C YF can be extended to an equi-Lebesgue familyd C YX.
Combining Proposition 2 and Theorem 5 (i), we obtain the main result.

Theorem 6. Let X be a perfectly normal space, Y be a Polish space and E C X be an ar-
bitrary set. Then every equi-continuous family % C YE can be extended to equi-Lebesgue
tamily ¢ C YX,
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Hexait X — romoaoriunamit npoctip i (Y,d) — HMOBHMIT MeTpUYHWMIA cenapabeAbHIIT IPOCTIp.
Cim'to # dynkuii 3 X B Y M1 Ha3MBaeMO OAHOCTAIHO AebeT0BOIO, SIKIIIO AASI KOXKHOTO € > 0 icHye
Take OKpuTTsI (F,) mpocropy X, sike cKAaAaeThesI i3 3aMKHeHnX MHOXuH, o diam f(F,;) < & Aas
Bcixn € NTa f € #.

Mm AOBOAMMO, IO AASL AOCKOHAAO HOPMAaABHOrO IpocTopy X, MOBHOIO METPMYHOTO cemlapa-
HeAbpHOro mpocTopy Y Ta A0BiABHOI miaMHOXMEM E C X KOXHY OAHOCTAlfHO HeIlepepBHY CiM'I0
dyskmin . C YE moxna IIPOAOBXXUTY A0 OAHOCTAIHO AeberoBoi ciM'i ¥ C YX.

Kntouosi cnosa i ppasu: MpoAOBXeHHsI PYHKIII mepiIoro kaacy bopeast, oaHOcTalHO bepiBcbka
ciM’st pyHKIIM, OAOHCTalHO AeberoBa ciM’st pyHKIIN, 1-BiroKpeMHa MHOXMWHA, METPWU30BHMIA IIPO-
CTip, TOMOAOTIUHMIT IPOCTIp.



