References

  1. Ashordia M. Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 1996, 46 (3), 385–404.
  2. Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems in Sobolev spaces. J. Math. Sci. 2020, 247 (2), 238–247. doi:10.1007/s10958-020-04799-w
  3. Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems with a parameter in Sobolev spaces. Ukrainian Math. J. 2021, 72 (8), 1175–1184. doi:10.1007/s11253-020-01859-x (translation of Ukrain. Mat. Zh. 2020, 72 (8), 1015–1023. doi:10.37863/umzh.v72i8.6158 (in Ukrainian))
  4. Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems in Sobolev spaces. Ukrainian Math. J. 2019, 70 (10), 1526–1537. doi:10.1007/s11253-019-01588-w (translation of Ukrain. Mat. Zh. 2018, 70 (10), 1324–1333. (in Ukrainian))
  5. Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2019, 70 (11), 1677–1687. doi:10.1007/s11253-019-01599-7 (translation of Ukrain. Mat. Zh. 2018, 70 (11), 1457–1465. (in Ukrainian))
  6. Atlasiuk O., Mikhailets V. On differential systems in Sobolev spaces with generic inhomogeneous boundary conditions. In: Chatzakou M., Ruzhansky M., Stoeva D. (Eds.) Women in Analysis and PDE. GFOW APDEGS 2022 2021. Trends in Mathematics, 5. Birkhauser, Cham, 2024, 37–47.
  7. Atlasiuk O.M., Mikhailets V. A. On Fredholm parameter-dependent boundary-value problems in Sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. 2020, (6), 3–6. doi:10.15407/dopovidi2020.06.003
  8. Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems. VSP, Utrecht-Boston, 2004.
  9. Gantmacher F.R. The theory of matrices. Chelsea Publishing Company, New York, 1959.
  10. Gnyp E.V., Kodlyuk T.I., Mikhailets V.A. Fredholm boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2015, 67 (5), 658–667. doi:10.1007/s11253-015-1105-1 (translation of Ukrain. Mat. Zh. 2015, 67 (5), 584–591. (in Russian))
  11. Goriunov A.S., Mikhailets V.A., Pankrashkin K. Formally self-ajoint quasi-differential operators and boundary-value problems. Electr. J. Differ. Equ. 2013, 2013, 1–16.
  12. Goriunov A.S., Mikhailets V.A. Regularization of singular Sturm-Liouville equations. Methods Funct. Anal. Topology 2010, 16 (2), 120–130.
  13. Goriunov A.S., Mikhailets V.A. Regularization of two-term differential equations with singular coefficients by quasiderivatives. Ukrainian Math. J. 2012, 63 (9), 1361–1378. doi:10.1007/s11253-012-0584-6 (translation of Ukrain. Mat. Zh. 2011, 63 (9), 1190–1205. (in Russian))
  14. Goriunov A.S., Mikhailets V.A. Resolvent convergence of Sturm-Liouville operators with singular potentials. Math. Notes 2010, 87 (1), 287–292. doi:10.1134/S0001434610010372 (translation of Mat. Zametki 2010, 87 (2), 311–315. (in Russian))
  15. Hnyp Ye.V., Kodliuk T.I. Continuity in a parameter of solutions of nonclassical multipoint boundary-value problems on Sobolev spaces. In: Differential equations and related issues of analysis. Proc. of the IM of the NAS of Ukraine 2015, 12 (2), 101–112. (in Ukrainian)
  16. Hnyp E.V. Continuity of the solutions of one-dimensional boundary-value problems with respect to the parameter in the Slobodetskii spaces. Ukrainian Math. J. 2016, 68 (6), 849–861. doi:10.1007/s11253-016-1261-y (translation of Ukrain. Mat. Zh. 2011, 68 (6), 746–756. (in Ukrainian))
  17. Hnyp Y.V., Mikhailets V.A., Murach A.A. Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces. Electr. J. Differ. Equ. 2017, 2017 (81), 1–13.
  18. Hörmander L. The analysis of linear partial differential operators. III: Pseudo-differential operators. Springer-Verlag, Berlin, Heidelberg, 2007.
  19. Ioffe A.D., Tihomirov V.M. Theory of extremal problems. VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
  20. Kiguradze I.T. Boundary-value problems for systems of ordinary differential equations. J. Soviet Math. 1988, 43 (2), 2259–2339. doi:10.1007/BF01100360 (translation of Itogi Nauk. i Tekhn. Ser. Sovrem. Probl. Mat., Nov. Dostizh. 1987, 30, 3–103. (in Russian))
  21. Kiguradze I.T. Some singular boundary-value problems for ordinary differential equations. Tbilisi University, Tbilisi, 1975. (in Russian)
  22. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland Mathematical Studies, Amsterdam, 2006.
  23. Kodliuk T.I. Limit transition in the class of multipoint boundary-value problems. In: Analysis and application: Proc. of the IM of the NAS of Ukraine 2012, 9 (2), 203–216. (in Russian)
  24. Kodliuk T.I., Mikhailets V.A. Multipoint boundary-value problems with a parameter in Sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. 2012, (11), 15–19. (in Russian)
  25. Kodlyuk T.I., Mikhailets V.A., Reva N.V. Limit theorems for one-dimensional boundary-value problems. Ukrainian Math. J. 2013, 65 (1), 77–90. doi:10.1007/s11253-013-0766-x (translation of Ukrain. Mat. Zh. 2013, 65 (1), 70–81. (in Russian))
  26. Kodlyuk T.I., Mikhailets V.A. Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces. J. Math. Sci. 2013, 190 (4), 589–599. doi:10.1007/s10958-013-1272-2 (translation of Ukrain. Mat. Visnyk 2012, 9 (4), 546–559. (in Russian))
  27. Krasil’nikov V.N. On the solution of some boundary-contact problems of linear hydrodynamics. J. Appl. Math. Mech. 1961, 25 (4), 1134–1141. doi:10.1016/S0021-8928(61)80021-X
  28. Luo Y., Trudinger N.S. Linear second order elliptic equations with Venttsel boundary conditions. Proc. Roy. Soc. Edinburgh Sect A 1991, 118 (3–4), 193–207. doi:10.1017/S0308210500029048
  29. Masliuk H.O., Mikhailets V.A. Continuity in the parameter for the solutions of one-dimensional boundary-value problems for differential systems of higher orders in Slobodetskii spaces. Ukrainian Math. J. 2018, 70 (3), 467–476. doi:10.1007/s11253-018-1510-3 (translation of Ukrain. Mat. Zh. 2018, 70 (3), 404–411. (in Ukrainian))
  30. Mikhailets V.A., Atlasiuk O.M., Skorobohach T.B. On the solvability of Fredholm boundary-value problems in fractional Sobolev spaces. Ukrainian Math. J. 2023, 75 (1), 107–117. doi:10.1007/s11253-023-02188-5 (translation of Ukrain. Mat. Zh. 2023, 75 (1), 96–104. doi:10.37863/umzh.v75i1.7308 (in Russian))
  31. Mikhailets V., Atlasiuk O. The solvability of inhomogeneous boundary-value problems in Sobolev spaces. Banach J. Math. Anal. 2024, 18, article number 12. doi:10.1007/s43037-023-00316-8
  32. Mikhailets V.A., Chekhanova G.A. Limit theorems for general one-dimensional boundary-value problems. J. Math. Sci. 2015, 204 (3), 333–342. doi:10.1007/s10958-014-2205-4 (translation of Ukrain. Mat. Visnyk 2014, 11 (2), 227–239. (in Ukrainian))
  33. Mikhailets V.A., Murach A.A., Soldatov V.O. Continuity in a parameter of solutions to generic boundary-value problems. Electron. J. Qual. Theory Differ. Equ. 2016, 2016 (A87), 1–16. doi:10.14232/ejqtde.2016.1.87
  34. Mikhailets V.A., Pelekhata O.B., Reva N.V. Limit theorems for the solutions of boundary-value problems. Ukrainian Math. J. 2018, 70 (2), 243–251. doi:10.1007/s11253-018-1498-8 (translation of Ukrain. Mat. Zh. 2018, 70 (2), –223. (in Russian))
  35. Mikhailets V.A., Skorobohach T.B. Fredholm boundary-value problem in Sobolev-Slobodetsky spaces. Ukrainian Math. J. 2021, 73 (7), 1071–1083. doi:10.1007/s11253-021-01977-0 (translation of Ukrain. Mat. Zh. 2021, 73 (7), 920–930. doi:10.37863/umzh.v73i7.6684 (in Ukrainian))
  36. Venttsel’ A.D. On Boundary Conditions for Multidimensional Diffusion Processes. Theory Probab. Appl. 1959, 4 (2), 164–177. doi:10.1137/1104014 (translation of Teor. Veroyatn. Prilozh. 1959, 4 (2), 172–185. (in Russian))