References
- Ashordia M. Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 1996, 46 (3), 385–404.
- Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems in Sobolev spaces. J. Math. Sci. 2020, 247 (2), 238–247. doi:10.1007/s10958-020-04799-w
- Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems with a parameter in Sobolev spaces. Ukrainian Math. J. 2021, 72 (8), 1175–1184. doi:10.1007/s11253-020-01859-x (translation of Ukrain. Mat. Zh. 2020, 72 (8), 1015–1023. doi:10.37863/umzh.v72i8.6158 (in Ukrainian))
- Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems in Sobolev spaces. Ukrainian Math. J. 2019, 70 (10), 1526–1537. doi:10.1007/s11253-019-01588-w (translation of Ukrain. Mat. Zh. 2018, 70 (10), 1324–1333. (in Ukrainian))
- Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2019, 70 (11), 1677–1687. doi:10.1007/s11253-019-01599-7 (translation of Ukrain. Mat. Zh. 2018, 70 (11), 1457–1465. (in Ukrainian))
- Atlasiuk O., Mikhailets V. On differential systems in Sobolev spaces with generic inhomogeneous boundary conditions. In: Chatzakou M., Ruzhansky M., Stoeva D. (Eds.) Women in Analysis and PDE. GFOW APDEGS 2022 2021. Trends in Mathematics, 5. Birkhauser, Cham, 2024, 37–47.
- Atlasiuk O.M., Mikhailets V. A. On Fredholm parameter-dependent boundary-value problems in Sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. 2020, (6), 3–6. doi:10.15407/dopovidi2020.06.003
- Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems. VSP, Utrecht-Boston, 2004.
- Gantmacher F.R. The theory of matrices. Chelsea Publishing Company, New York, 1959.
- Gnyp E.V., Kodlyuk T.I., Mikhailets V.A. Fredholm boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2015, 67 (5), 658–667. doi:10.1007/s11253-015-1105-1 (translation of Ukrain. Mat. Zh. 2015, 67 (5), 584–591. (in Russian))
- Goriunov A.S., Mikhailets V.A., Pankrashkin K. Formally self-ajoint quasi-differential operators and boundary-value problems. Electr. J. Differ. Equ. 2013, 2013, 1–16.
- Goriunov A.S., Mikhailets V.A. Regularization of singular Sturm-Liouville equations. Methods Funct. Anal. Topology 2010, 16 (2), 120–130.
- Goriunov A.S., Mikhailets V.A. Regularization of two-term differential equations with singular coefficients by quasiderivatives. Ukrainian Math. J. 2012, 63 (9), 1361–1378. doi:10.1007/s11253-012-0584-6 (translation of Ukrain. Mat. Zh. 2011, 63 (9), 1190–1205. (in Russian))
- Goriunov A.S., Mikhailets V.A. Resolvent convergence of Sturm-Liouville operators with singular potentials. Math. Notes 2010, 87 (1), 287–292. doi:10.1134/S0001434610010372 (translation of Mat. Zametki 2010, 87 (2), 311–315. (in Russian))
- Hnyp Ye.V., Kodliuk T.I. Continuity in a parameter of solutions of nonclassical multipoint boundary-value problems on Sobolev spaces. In: Differential equations and related issues of analysis. Proc. of the IM of the NAS of Ukraine 2015, 12 (2), 101–112. (in Ukrainian)
- Hnyp E.V. Continuity of the solutions of one-dimensional boundary-value problems with respect to the parameter in the Slobodetskii spaces. Ukrainian Math. J. 2016, 68 (6), 849–861. doi:10.1007/s11253-016-1261-y (translation of Ukrain. Mat. Zh. 2011, 68 (6), 746–756. (in Ukrainian))
- Hnyp Y.V., Mikhailets V.A., Murach A.A. Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces. Electr. J. Differ. Equ. 2017, 2017 (81), 1–13.
- Hörmander L. The analysis of linear partial differential operators. III: Pseudo-differential operators. Springer-Verlag, Berlin, Heidelberg, 2007.
- Ioffe A.D., Tihomirov V.M. Theory of extremal problems. VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
- Kiguradze I.T. Boundary-value problems for systems of ordinary differential equations. J. Soviet Math. 1988, 43 (2), 2259–2339. doi:10.1007/BF01100360 (translation of Itogi Nauk. i Tekhn. Ser. Sovrem. Probl. Mat., Nov. Dostizh. 1987, 30, 3–103. (in Russian))
- Kiguradze I.T. Some singular boundary-value problems for ordinary differential equations. Tbilisi University, Tbilisi, 1975. (in Russian)
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland Mathematical Studies, Amsterdam, 2006.
- Kodliuk T.I. Limit transition in the class of multipoint boundary-value problems. In: Analysis and application: Proc. of the IM of the NAS of Ukraine 2012, 9 (2), 203–216. (in Russian)
- Kodliuk T.I., Mikhailets V.A. Multipoint boundary-value problems with a parameter in Sobolev spaces. Dopov. Nats. Akad. Nauk Ukr. 2012, (11), 15–19. (in Russian)
- Kodlyuk T.I., Mikhailets V.A., Reva N.V. Limit theorems for one-dimensional boundary-value problems. Ukrainian Math. J. 2013, 65 (1), 77–90. doi:10.1007/s11253-013-0766-x (translation of Ukrain. Mat. Zh. 2013, 65 (1), 70–81. (in Russian))
- Kodlyuk T.I., Mikhailets V.A. Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces. J. Math. Sci. 2013, 190 (4), 589–599. doi:10.1007/s10958-013-1272-2 (translation of Ukrain. Mat. Visnyk 2012, 9 (4), 546–559. (in Russian))
- Krasil’nikov V.N. On the solution of some boundary-contact problems of linear hydrodynamics. J. Appl. Math. Mech. 1961, 25 (4), 1134–1141. doi:10.1016/S0021-8928(61)80021-X
- Luo Y., Trudinger N.S. Linear second order elliptic equations with Venttsel boundary conditions. Proc. Roy. Soc. Edinburgh Sect A 1991, 118 (3–4), 193–207. doi:10.1017/S0308210500029048
- Masliuk H.O., Mikhailets V.A. Continuity in the parameter for the solutions of one-dimensional boundary-value problems for differential systems of higher orders in Slobodetskii spaces. Ukrainian Math. J. 2018, 70 (3), 467–476. doi:10.1007/s11253-018-1510-3 (translation of Ukrain. Mat. Zh. 2018, 70 (3), 404–411. (in Ukrainian))
- Mikhailets V.A., Atlasiuk O.M., Skorobohach T.B. On the solvability of Fredholm boundary-value problems in fractional Sobolev spaces. Ukrainian Math. J. 2023, 75 (1), 107–117. doi:10.1007/s11253-023-02188-5 (translation of Ukrain. Mat. Zh. 2023, 75 (1), 96–104. doi:10.37863/umzh.v75i1.7308 (in Russian))
- Mikhailets V., Atlasiuk O. The solvability of inhomogeneous boundary-value problems in Sobolev spaces. Banach J. Math. Anal. 2024, 18, article number 12. doi:10.1007/s43037-023-00316-8
- Mikhailets V.A., Chekhanova G.A. Limit theorems for general one-dimensional boundary-value problems. J. Math. Sci. 2015, 204 (3), 333–342. doi:10.1007/s10958-014-2205-4 (translation of Ukrain. Mat. Visnyk 2014, 11 (2), 227–239. (in Ukrainian))
- Mikhailets V.A., Murach A.A., Soldatov V.O. Continuity in a parameter of solutions to generic boundary-value problems. Electron. J. Qual. Theory Differ. Equ. 2016, 2016 (A87), 1–16. doi:10.14232/ejqtde.2016.1.87
- Mikhailets V.A., Pelekhata O.B., Reva N.V. Limit theorems for the solutions of boundary-value problems. Ukrainian Math. J. 2018, 70 (2), 243–251. doi:10.1007/s11253-018-1498-8 (translation of Ukrain. Mat. Zh. 2018, 70 (2), –223. (in Russian))
- Mikhailets V.A., Skorobohach T.B. Fredholm boundary-value problem in Sobolev-Slobodetsky spaces. Ukrainian Math. J. 2021, 73 (7), 1071–1083. doi:10.1007/s11253-021-01977-0 (translation of Ukrain. Mat. Zh. 2021, 73 (7), 920–930. doi:10.37863/umzh.v73i7.6684 (in Ukrainian))
- Venttsel’ A.D. On Boundary Conditions for Multidimensional Diffusion Processes. Theory Probab. Appl. 1959, 4 (2), 164–177. doi:10.1137/1104014 (translation of Teor. Veroyatn. Prilozh. 1959, 4 (2), 172–185. (in Russian))