References
- Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. An approximation to Appell’s hypergeometric function \(F_2\) by branched continued fraction. Dolomites Res. Notes Approx. 2024, 17 (1), 22–31. doi:10.14658/PUPJ-DRNA-2024-1-3
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021, 9 (2), 148. doi:10.3390/math9020148
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a,b;c,d;z_1,z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
- Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6.\) Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
- Antonova T.M. Multidimensional generalization of the theorem on parabolic domains of convergence of continued fractions. Mat. Met. Fiz.-Mekh. Polya 1999, 42 (4), 7–12. (in Ukrainian)
- Baran O.E., Bodnar D.I. The expansion of multiple power series into multidimensional C-fraction with independent variables. Volynskij Mat. Visn. 1999, 6, 15–20. (in Ukrainian)
- Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in Ukrainian)
- Bilanyk I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (2), 115–123. doi:10.30970/ms.52.2.115-123
- Bodnar D., Dmytryshyn R. On some convergence criteria for branched continued fractions with independent variables. Visn. Lviv Univ. Ser. Mech-Math. 2008, 68, 22–30. (in Ukrainian).
- Bodnar D.I., Bilanyk I.B. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265, 423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in Ukrainian))
- Bodnar D.I., Bilanyk I.B. Parabolic convergence regions of branched continued fractions of the special form. Carpathian Math. Publ. 2021, 13 (3), 619–630. doi:10.15330/cmp.13.3.619-630
- Bodnar D.I., Bilanyk I.B. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukranian Math. J. 2023, 74 (9), 1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat. Zh. 2022, 74 (9), 1155–1169. doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
- Bodnar D.I., Bodnar O.S., Bilanyk I.B. A truncation error bound for branched continued fractions of the special form on subsets of angular domains. Carpathian Math. Publ. 2023, 15 (2), 437–448. doi:10.15330/cmp.15.2.437-448
- Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
- Bodnar D.I. Convergence criteria of branched continued fractions. Dopov. Nats. Akad. Nauk Ukr. 1983, 8, 3–7. (in Ukrainian)
- Bodnar D.I. Corresponding branched continued fractions with linear partial numerators for double power series. Ukrain. Mat. Zh. 1991, 43 (4), 474–482. (in Russian)
- Bodnar D.I., Dmytryshyn R.I. On the convergence of multidimensional g-fraction. Mat. Stud. 2001, 15 (2), 115–126.
- Bodnar D.I., Dmytryshyn R.I. Multidimensional associated fractions with independent variables and multiple power series. Ukr. Math. J. 2019, 71 (3), 370–386. doi:10.1007/s11253-019-01652-5 (translation of Ukrain. Mat. Zh. 2019, 71 (3), 325–339. (in Ukrainian))
- Bodnar D.I. Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions. J. Math. Sci. 1993, 64, 1155–1158. doi:10.1007/BF01098839 (translation of Mat. Met. Fiz.-Mekh. Polya 1990, 32, 40–44. (in Ukrainian))
- Bodnar D.I., Hoyenko N.P. Approximation of the ratio of Lauricella functions by a branched continued fraction. Mat. Stud. 2003, 20 (2), 210–214. (in Ukrainian)
- Bodnar D.I., Manzii O.S. Expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction and its limit behavior. J. Math. Sci. 2001, 107 (1), 3550–3554. doi:10.1023/A:1011977720316 (translation of Mat. Met. Fiz.-Mekh. Polya 1998, 41 (4), 12–16. (in Ukrainian))
- Bodnar D.I. Multidimensional \(C\)-fractions. J. Math. Sci. 1998, 90 (5), 2352–2359. doi:10.1007/BF02433965 (translation of Mat. Met. Fiz.-Mekh. Polya 1996, 39 (3), 39–66. (in Ukrainian))
- Bodnar D.I. Multidimensional positive definite fractions. Mat. Met. Fiz.-Mekh. Polya 1985, 22, 25–29. (in Russian)
- Bodnar O.S., Dmytryshyn R.I. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2018, 10 (1), 58–64. doi:10.15330/cmp.10.1.58-64
- Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
- Cuyt A., Verdonk B. A review of branched continued fraction theory for the construction of multivariate rational approximants. Appl. Numer. Math. 1988, 4 (2–4), 263–271. doi:10.1016/0168-9274(83)90006-5
- Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. Numerical stability of the branched continued fraction expansion of Horn’s hypergeometric function \(H_4.\) Mat. Stud. 2024, 61 (1), 51–60. doi:10.30970/ms.61.1.51-60
- Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry 2024, 16 (2), 220. doi:10.3390/sym16020220
- Dmytryshyn R.I. Associated branched continued fractions with two independent variables. Ukrainian Math. J. 2015, 66 (9), 1312–1323. doi:10.1007/s11253-015-1011-6 (translation of Ukrain. Mat. Zh. 2014, 66 (39), 1175–1184. (in Ukrainian))
- Dmytryshyn R.I., Baran O.E. Some types of branched continued fractions corresponding to multiple power series. Proc. of IM NAS of Ukraine 2000, 31, 82–92. (in Ukrainian)
- Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
- Dmytryshyn R.I. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47 (2), 150–159. doi:10.15330/ms.47.2.150-159
- Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
- Dmytryshyn R.I. On the convergence of the multidimensional g-fraction with independent variables. Mat. Met. Fiz.-Mekh. Polya 2005, 48 (4), 121–127. (in Ukrainian)
- Dmytryshyn R.I. On the expansion of some functions in a two-dimensional g-fraction with independent variables. J. Math. Sci. 2012, 181 (3), 320–327. doi:10.1007/s10958-012-0687-5 (translation of Mat. Met. Fiz.-Mekh. Polya 2010, 53 (4), 28–34. (in Ukrainian))
- Dmytryshyn R.I. Positive definite branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (2), 225–230. doi:10.15330/cmp.5.2.225-230.
- Dmytryshyn R.I. Some region of convergence of multidimensional J-fractions with nonequivalent variables. Math. Bull. Shevchenko Sci. Soc. 2011, 8, 69–77. (in Ukrainian)
- Dmytryshyn R.I The multidimensional analogues of g-fractions, their properties, convergence criteria. PhD Thesis on Mathematical Analysis, Pidstryhach IPPMM NASU, Lviv, 1998. (in Ukrainian).
- Dmytryshyn R.I. The multidimensional generalization of \(g\)-fractions and their application. J. Comput. Appl. Math. 2004, 164-165, 265–284. doi:10.1016/S0377-0427(03)00642-3
- Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\). Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
- Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M., Cesarano C. On some domains of convergence of branched continued fraction expansions of the ratios of Horn hypergeometric functions \(H_4.\) Ukr. Math. J. 2023, 76 (4), 559–565. doi:10.1007/s11253-024-02338-3 (translation of Ukrain. Mat. Zh. 2024, 76 (4), 502–508. doi:10.3842/umzh.v74i4.7877 (in Ukrainian))
- Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. On the analytic extension of the Horn’s hypergeometric function \(H_4\). Carpathian Math. Publ. 2024, 16 (1), 32–39. doi:10.15330/cmp.16.1.32-39
- Gragg W.B. Truncation error bounds for g-fractions. Numer. Math. 1968, 11 (5), 370–379. doi:10.1007/BF02161885
- Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian).
- Hladun V., Rusyn R., Dmytryshyn M. On the analytic extension of three ratios of Horn’s confluent hypergeometric function \(\mathrm{H}_7\). Res. Math. 2024, 32 (1), 60–70. doi:10.15421/242405
- Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
- Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach IAPMM NASU, Lviv, 2010. (in Ukrainian)
- Lorentzen L., Waadeland H. Continued Fractions with Applications. North-Holland, Amsterdam, 1992.
- Murphy J.A., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050X(78)90002-5
- Siemaszko W. Thile-type branched continued fractions for two-variable functions. J. Comput. Appl. Math. 1983, 6 (2), 121–125. doi:10.1016/0377-0427(83)90037-7
- Skorobohatko V.Ya. The theory of branched continued fractions and its application in computational mathematics. Nauka, Moscow, 1983. (in Russian)
- Stieltjes T.-J. Recherched sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 1894, 8, 1–122, 1895, 9, 1–47.
- Wall H.S. Analytic theory of continued fractions. Van Nostrand, New York, 1948.