References

  1. Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. An approximation to Appell’s hypergeometric function \(F_2\) by branched continued fraction. Dolomites Res. Notes Approx. 2024, 17 (1), 22–31. doi:10.14658/PUPJ-DRNA-2024-1-3
  2. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
  3. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021, 9 (2), 148. doi:10.3390/math9020148
  4. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a,b;c,d;z_1,z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  5. Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6.\) Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
  6. Antonova T.M. Multidimensional generalization of the theorem on parabolic domains of convergence of continued fractions. Mat. Met. Fiz.-Mekh. Polya 1999, 42 (4), 7–12. (in Ukrainian)
  7. Baran O.E., Bodnar D.I. The expansion of multiple power series into multidimensional C-fraction with independent variables. Volynskij Mat. Visn. 1999, 6, 15–20. (in Ukrainian)
  8. Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in Ukrainian)
  9. Bilanyk I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (2), 115–123. doi:10.30970/ms.52.2.115-123
  10. Bodnar D., Dmytryshyn R. On some convergence criteria for branched continued fractions with independent variables. Visn. Lviv Univ. Ser. Mech-Math. 2008, 68, 22–30. (in Ukrainian).
  11. Bodnar D.I., Bilanyk I.B. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265, 423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in Ukrainian))
  12. Bodnar D.I., Bilanyk I.B. Parabolic convergence regions of branched continued fractions of the special form. Carpathian Math. Publ. 2021, 13 (3), 619–630. doi:10.15330/cmp.13.3.619-630
  13. Bodnar D.I., Bilanyk I.B. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukranian Math. J. 2023, 74 (9), 1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat. Zh. 2022, 74 (9), 1155–1169. doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
  14. Bodnar D.I., Bodnar O.S., Bilanyk I.B. A truncation error bound for branched continued fractions of the special form on subsets of angular domains. Carpathian Math. Publ. 2023, 15 (2), 437–448. doi:10.15330/cmp.15.2.437-448
  15. Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  16. Bodnar D.I. Convergence criteria of branched continued fractions. Dopov. Nats. Akad. Nauk Ukr. 1983, 8, 3–7. (in Ukrainian)
  17. Bodnar D.I. Corresponding branched continued fractions with linear partial numerators for double power series. Ukrain. Mat. Zh. 1991, 43 (4), 474–482. (in Russian)
  18. Bodnar D.I., Dmytryshyn R.I. On the convergence of multidimensional g-fraction. Mat. Stud. 2001, 15 (2), 115–126.
  19. Bodnar D.I., Dmytryshyn R.I. Multidimensional associated fractions with independent variables and multiple power series. Ukr. Math. J. 2019, 71 (3), 370–386. doi:10.1007/s11253-019-01652-5 (translation of Ukrain. Mat. Zh. 2019, 71 (3), 325–339. (in Ukrainian))
  20. Bodnar D.I. Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions. J. Math. Sci. 1993, 64, 1155–1158. doi:10.1007/BF01098839 (translation of Mat. Met. Fiz.-Mekh. Polya 1990, 32, 40–44. (in Ukrainian))
  21. Bodnar D.I., Hoyenko N.P. Approximation of the ratio of Lauricella functions by a branched continued fraction. Mat. Stud. 2003, 20 (2), 210–214. (in Ukrainian)
  22. Bodnar D.I., Manzii O.S. Expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction and its limit behavior. J. Math. Sci. 2001, 107 (1), 3550–3554. doi:10.1023/A:1011977720316 (translation of Mat. Met. Fiz.-Mekh. Polya 1998, 41 (4), 12–16. (in Ukrainian))
  23. Bodnar D.I. Multidimensional \(C\)-fractions. J. Math. Sci. 1998, 90 (5), 2352–2359. doi:10.1007/BF02433965 (translation of Mat. Met. Fiz.-Mekh. Polya 1996, 39 (3), 39–66. (in Ukrainian))
  24. Bodnar D.I. Multidimensional positive definite fractions. Mat. Met. Fiz.-Mekh. Polya 1985, 22, 25–29. (in Russian)
  25. Bodnar O.S., Dmytryshyn R.I. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2018, 10 (1), 58–64. doi:10.15330/cmp.10.1.58-64
  26. Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
  27. Cuyt A., Verdonk B. A review of branched continued fraction theory for the construction of multivariate rational approximants. Appl. Numer. Math. 1988, 4 (2–4), 263–271. doi:10.1016/0168-9274(83)90006-5
  28. Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. Numerical stability of the branched continued fraction expansion of Horn’s hypergeometric function \(H_4.\) Mat. Stud. 2024, 61 (1), 51–60. doi:10.30970/ms.61.1.51-60
  29. Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry 2024, 16 (2), 220. doi:10.3390/sym16020220
  30. Dmytryshyn R.I. Associated branched continued fractions with two independent variables. Ukrainian Math. J. 2015, 66 (9), 1312–1323. doi:10.1007/s11253-015-1011-6 (translation of Ukrain. Mat. Zh. 2014, 66 (39), 1175–1184. (in Ukrainian))
  31. Dmytryshyn R.I., Baran O.E. Some types of branched continued fractions corresponding to multiple power series. Proc. of IM NAS of Ukraine 2000, 31, 82–92. (in Ukrainian)
  32. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
  33. Dmytryshyn R.I. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47 (2), 150–159. doi:10.15330/ms.47.2.150-159
  34. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  35. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
  36. Dmytryshyn R.I. On the convergence of the multidimensional g-fraction with independent variables. Mat. Met. Fiz.-Mekh. Polya 2005, 48 (4), 121–127. (in Ukrainian)
  37. Dmytryshyn R.I. On the expansion of some functions in a two-dimensional g-fraction with independent variables. J. Math. Sci. 2012, 181 (3), 320–327. doi:10.1007/s10958-012-0687-5 (translation of Mat. Met. Fiz.-Mekh. Polya 2010, 53 (4), 28–34. (in Ukrainian))
  38. Dmytryshyn R.I. Positive definite branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (2), 225–230. doi:10.15330/cmp.5.2.225-230.
  39. Dmytryshyn R.I. Some region of convergence of multidimensional J-fractions with nonequivalent variables. Math. Bull. Shevchenko Sci. Soc. 2011, 8, 69–77. (in Ukrainian)
  40. Dmytryshyn R.I The multidimensional analogues of g-fractions, their properties, convergence criteria. PhD Thesis on Mathematical Analysis, Pidstryhach IPPMM NASU, Lviv, 1998. (in Ukrainian).
  41. Dmytryshyn R.I. The multidimensional generalization of \(g\)-fractions and their application. J. Comput. Appl. Math. 2004, 164-165, 265–284. doi:10.1016/S0377-0427(03)00642-3
  42. Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\). Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
  43. Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M., Cesarano C. On some domains of convergence of branched continued fraction expansions of the ratios of Horn hypergeometric functions \(H_4.\) Ukr. Math. J. 2023, 76 (4), 559–565. doi:10.1007/s11253-024-02338-3 (translation of Ukrain. Mat. Zh. 2024, 76 (4), 502–508. doi:10.3842/umzh.v74i4.7877 (in Ukrainian))
  44. Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. On the analytic extension of the Horn’s hypergeometric function \(H_4\). Carpathian Math. Publ. 2024, 16 (1), 32–39. doi:10.15330/cmp.16.1.32-39
  45. Gragg W.B. Truncation error bounds for g-fractions. Numer. Math. 1968, 11 (5), 370–379. doi:10.1007/BF02161885
  46. Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian).
  47. Hladun V., Rusyn R., Dmytryshyn M. On the analytic extension of three ratios of Horn’s confluent hypergeometric function \(\mathrm{H}_7\). Res. Math. 2024, 32 (1), 60–70. doi:10.15421/242405
  48. Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
  49. Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach IAPMM NASU, Lviv, 2010. (in Ukrainian)
  50. Lorentzen L., Waadeland H. Continued Fractions with Applications. North-Holland, Amsterdam, 1992.
  51. Murphy J.A., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050X(78)90002-5
  52. Siemaszko W. Thile-type branched continued fractions for two-variable functions. J. Comput. Appl. Math. 1983, 6 (2), 121–125. doi:10.1016/0377-0427(83)90037-7
  53. Skorobohatko V.Ya. The theory of branched continued fractions and its application in computational mathematics. Nauka, Moscow, 1983. (in Russian)
  54. Stieltjes T.-J. Recherched sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 1894, 8, 1–122, 1895, 9, 1–47.
  55. Wall H.S. Analytic theory of continued fractions. Van Nostrand, New York, 1948.