References

  1. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
  2. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021, 9 (2), 148. doi:10.3390/math9020148
  3. Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of some ratios of Horn’s hypergeometric functions \(H_7\) by continued fractions. Axioms 2023, 12 (8), 738. doi:10.3390/axioms12080738
  4. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a,b;c,d;z_1,z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  5. Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6.\) Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
  6. Antonova T., Dmytryshyn R., Sharyn S. Generalized hypergeometric function \({}_3F_2\) ratios and branched continued fraction expansions. Axioms 2021, 10 (4), 310. doi:10.3390/axioms10040310
  7. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3–14. doi:10.30970/ms.54.1.3-14
  8. Bilanyk I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (2), 115–123. doi:10.30970/ms.52.2.115-123
  9. Bodnar D.I., Bilanyk I.B. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265, 423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in Ukrainian))
  10. Bodnar D.I., Bilanyk I.B. On the convergence of branched continued fractions of a special form in angular domains. J. Math. Sci. 2020, 246, 188–200. doi:10.1007/s10958-020-04729-w (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 63 (3), 60–69. (in Ukrainian))
  11. Bodnar D.I., Bilanyk I.B. Parabolic convergence regions of branched continued fractions of the special form. Carpathian Math. Publ. 2021, 13 (3), 619–630. doi:10.15330/cmp.13.3.619-630
  12. Bodnar D.I., Bilanyk I.B. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukranian Math. J. 2023, 74 (9), 1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat. Zh. 2022, 74 (9), 1155–1169. doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
  13. Bodnar D.I., Bodnar O.S., Bilanyk I.B. A truncation error bound for branched continued fractions of the special form on subsets of angular domains. Carpathian Math. Publ. 2023, 15 (2), 437–448. doi:10.15330/cmp.15.2.437-448
  14. Blümlein J., Saragnese M., Schneider C. Hypergeometric structures in Feynman integrals. Ann. Math. Artif. Intell. 2023, 91, 591–649. doi:10.1007/s10472-023-09831-8
  15. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
  16. Dmytryshyn R.I. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47 (2), 150–159. doi:10.15330/ms.47.2.150-159
  17. Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry 2024, 16 (2), 220. doi:10.3390/sym16020220
  18. Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\). Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
  19. Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M., Cesarano C. On some domains of convergence of branched continued fraction expansions of ratios of Horn hypergeometric functions \(H_4.\) Ukrain. Mat. Zh. 2023 (accepted). (in Ukrainian)
  20. Dmytryshyn R.I., Lutsiv I.-A.V. Three- and four-term recurrence relations for Horn’s hypergeometric function \(H_4.\) Res. Math. 2022, 30 (1), 21–29. doi:10.15421/242203
  21. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
  22. Dmytryshyn R.I. On the expansion of some functions in a two-dimensional g-fraction with independent variables. J. Math. Sci. 2012, 181 (3), 320–327. doi:10.1007/s10958-012-0687-5
  23. Dmytryshyn R.I., Sharyn S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
  24. Dmytryshyn R.I. Two-dimensional generalization of the Rutishauser qd-algorithm. J. Math. Sci. 2015, 208 (3), 301–309. doi:10.1007/s10958-015-2447-9
  25. Horn J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 1931, 105, 381–407. doi:10.1007/BF01455825
  26. Kaliuzhnyi-Verbovetskyi D., Pivovarchik V. Recovering the shape of a quantum caterpillar tree by two spectra. Mech. Math. Methods 2023, 5 (1), 14–24. doi:10.31650/2618-0650-2023-5-1-14-24
  27. Kaminsky A.A., Selivanov M.F. On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity. Int. Appl. Mech. 2006, 42, 115–126. doi:10.1007/s10778-006-0066-3
  28. Komatsu T. Asymmetric circular graph with Hosoya index and negative continued fractions. Carpathian Math. Publ. 2021, 13 (1), 608–618. doi:10.15330/cmp.13.3.608-618
  29. Korkmaz-Duzgun D. A new type multivariable multiple hypergeometric functions. Turkish J. Math. Comput. Sci. 2021, 13 (2), 359–372. doi:10.47000/tjmcs.954676
  30. Lima H. Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series. Adv. Appl. Math. 2023, 147, 102505. doi:10.1016/j.aam.2023.102505
  31. Manziy O., Hladun V., Ventyk L. The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions. Math. Model. Comput. 2017, 4 (1), 48–58. doi:10.23939/mmc2017.01.048
  32. Parmar R.K., Choi J., Saravanan S. Extended Exton’s triple and Horn’s double hypergeometric functions and associated bounding inequalities. Symmetry 2023, 15 (6), 1132. doi:10.3390/sym15061132
  33. Petreolle M., Sokal A.D. Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions. Eur. J. Combin. 2021, 92, 103235. doi:10.1016/j.ejc.2020.103235
  34. Wang R., Qian J. On branched continued fractions rational interpolation over pyramid-typed grids. Numer. Algor. 2010, 54, 47–72. doi:10.1007/s11075-009-9322-z
  35. Younis J., Jain S., Agarwal P., Momani S. Certain integral representations involving hypergeometric functions in two variables. Math. Morav. 2022, 26 (1), 27–36. doi:10.5937/MatMor2201027Y