References
- Amanov T.I. Representation and embedding theorems for function
spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and
\(S^{(r)}_{p,\theta^*}B,\) \((0\leq x_j\leq2\pi; j=1,\ldots,n)\).
Tr. Mat. Inst. Steklova 1965, 77, 5–34. (in
Russian)
- Bari N.K., Stechkin S.B. The best approximations and differential
properties of two conjugate functions. Trans. Moscow Math. Soc.
1956, 5, 483–522. (in Russian)
- Belinsky E.S. Estimates of entropy numbers and Gaussian measures
for classes of functions with bounded mixed derivative. J. Approx.
Theory 1998, 93 (1), 114–127.
doi:10.1006/jath.1997.3157
- Bernstein S.N. Collected work, Vol. II. Constructive theory of
functions (1931–1953). Nauka, Moscow, 1954. (in Russian)
- Dũng D., Temlyakov V.N., Ullrich T. Hyperbolic Cross Approximation.
Adv. Courses in Math. Birkhauser, CRM Barcelona, 2018.
- Fedunyk O.V. Linear widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables in the space \(L_q\). Ukrain. Math. J. 2006,
58 (1), 103–117. doi:10.1007/s11253-006-0053-1
(translation of Ukrain. Mat. Zh. 2006, 58 (1), 93–104.
(in Ukrainian))
- Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Best orthogonal
trigonometric approximations of the Nikol’skii-Besov-type classes of
periodic functions of one and several variables. Carpathian Math.
Publ. 2022, 14 (1), 171–184.
doi:10.15330/cmp.14.1.171-184
- Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of
approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of several variables with given majorant of mixed moduli of
continuity in the space \(L_{q}\).
Carpathian Math. Publ. 2019, 11 (2), 281–295.
doi:10.15330/cmp.11.2.281-295
- Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative
characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables with given majorant of mixed continuity
moduli in the space \(L_{\infty}\). J. Math. Sci. (N.Y.)
2018, 231 (1), 28–40. doi:10.1007/s10958-018-3803-3
(translation of Ukr. Mat. Visn. 2017, 14 (3), 345–360.
(in Ukrainian))
- Hembars’ka S.B., Fedunyk-Yaremchuk O.V. Approximation
characteristics of the Nikol’sky-Besov-type classes of periodic single-
and multivariable functions in the \(B_{1,1}\) space. J. Math. Sci. (N.Y.)
2021, 259 (1), 75–87. doi:10.1007/s10958-021-05600-2
(translation of Ukr. Mat. Visn. 2021, 18 (3), 289–405.
(in Ukrainian))
- Hembars’ka S.B., Romanyuk I.A., Fedunyk-Yaremchuk O.V.
Characteristics of the linear and nonlinear approximations of the
Nikol’skii-Besov-type classes of periodic functions of several
variables. J. Math. Sci. (N.Y.) 2023, 274 (3),
307–326. doi:10.1007/s10958-023-06602-y (translation of Ukr. Mat. Visn.
2023, 20 (2), 161–185. (in Ukrainian))
- Hembars’ka S.B., Zaderei P.V. Best orthogonal trigonometric
approximations of the Nikol’skii-Besov-type classes of periodic
functions in the space \(B_{\infty,1}\). Ukrain. Math. J. 2022,
74 (6), 883–895. doi:10.1007/s11253-022-02115-0
(translation of Ukrain. Mat. Zh. 2022, 74 (6), 772–783.
doi:10.37863/umzh.v74i6.7070 (in Ukrainian))
- Hembars’kyi M.V., Hembars’ka S.B. Widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables in the space \(B_{1,1}\). J. Math. Sci. (N.Y.) 2018,
235 (1), 35–45. doi:10.1007/s10958-018-4056-x
(translation of Ukr. Mat. Visn. 2018, 15 (1), 43–56.
(in Ukrainian))
- Hembars’kyi M.V., Hembars’ka S.B., Solich K.V. The best
approximations and widths of the classes of periodic functions of one
and several variables in the space \(B_{\infty,1}\). Mat. Stud. 2019,
51 (1), 74–85. doi:10.15330/ms.51.1.74-85 (in
Ukrainian)
- Ismagilov R.S. Diameters of sets in normed linear spaces, and the
approximation of functions by trigonometric polynomials. Russian
Math. Surveys 1974, 29 (3), 169–186.
doi:10.1070/RM1974v029n03ABEH001287 (translation of Uspekhi Mat. Nauk
1974, 29 (3(177)), 161–178. (in Russian))
- Kashin B.S., Temlyakov V.N. On best \(m\)-term approximations and the entropy of
sets in the space \(L^1\). Math.
Notes 1994, 56 (5–6), 1137–1157. doi:10.1007/BF02274662
(translation of Mat. Zametki 1994, 189 (5), 57–86. (in
Russian))
- Kolmogorov A.N. Über die beste Annaherung von Funktionen einer
gegebenen Funktionenklasse. Ann. of Math. 1936, 37
(1), 107–110. doi:10.2307/1968691
- Lizorkin P.I., Nikol’skii S.M. Spaces of functions with mixed
smoothness from the decomposition point of view. Proc. Steklov
Inst. Math. 1990, 187, 163–184. (translation of Tr.
Mat. Inst. Steklova 1989, 187, 143–161. (in
Russian))
- Nikol’skii S.M. Functions with dominant mixed derivative,
satisfying a multiple Holder condition. Sibirsk. Mat. Zh. 1963,
4 (6), 1342–1364. (in Russian)
- Nikol’skii S.M. Inequalities for entire functions of finite
degree and their application in the theory of differentiable functions
of severaly variables. Tr. Mat. Inst. Steklova 1951,
38, 244–278. (in Russian)
- Pozharska K.V., Romanyuk A.S. Estimates for the approximation
characteristics of the Nikol’skii-Besov classes of functions with mixed
smoothness in the space \(B_{q,1}\). arXiv:2404.05451.
doi:10.48550/arXiv.2404.05451
- Pustovoitov N.N. Representation and approximation of periodic
functions of several variables with given mixed modulus of
continuity. Anal. Math. 1994, 20, 35–48.
doi:10.1007/BF01908917 (in Russian)
- Romanyuk A.S. Approximative characteristics of the classes of
periodic functions of many variables. Proc. of the Institute of
Mathematics of the NAS of Ukraine, Kiev, 2012, 93. (in
Russian)
- Romanyuk A.S. Approximation of Besov classes of periodic
functions of many variables in the space \(L_q\). Ukrain. Mat. Zh. 1991,
43 (10), 1398–1408. (in Russian)
- Romanyuk A.S. Best approximations and widths of classes of
periodic functions of several variables. Sb. Math. 2008,
199 (2), 253–275. doi:10.1070/SM2008v199n02ABEH003918
(translation of Mat. Sb. 2008, 199 (2), 93–114.
doi:10.4213/sm3685 (in Russian))
- Romanyuk A.S. Diameters and best approximation of the classes
\(B^r_{p,\theta}\) of periodic
functions of several variables. Anal. Math. 2011,
37, 181–213. doi:10.1007/s10476-011-0303-9 (in
Russian)
- Romanyuk A.S. Entropy numbers and widths for the classes \(B^{r}_{p,\theta}\) of periodic functions of
many variables. Ukrain. Math. J. 2017, 68 (10),
1620–1636. doi:10.1007/s11253-017-1315-9 (translation of Ukrain. Mat.
Zh. 2016, 68 (10), 1403–1417. (in Russian))
- Romanyuk A.S. Kolmogorov and trigonometric widths of Besov
classes \(B^r_{p,\theta}\) of
multivariate periodic functions. Sb. Math. 2006,
197 (1), 69–93. doi:10.1070/SM2006v197n01ABEH003747
(translation of Mat. Sb. 2006, 197 (1), 71–96. (in
Russian))
- Romanyuk A.S. Kolmogorov widths of Besov classes \(B^r_{p,\theta}\) in the metric of the space
\(L_{\infty}\). Ukr. Math. Bull.
2005, 2, 205–222. (translation of Ukr. Mat. Visn. 2005,
2, 201–208. (in Russian))
- Romanyuk A.S. Linear widths of the Besov classes of periodic
functions of many variables. I. Ukrain. Math. J. 2001,
53 (5), 744–761. doi:10.1023/A:1012530317130
(translation of Ukrain. Mat. Zh. 2001, 53 (5), 647–661.
(in Russian))
- Romanyuk A.S. Linear widths of the Besov classes of periodic
functions of many variables. II. Ukrain. Math. J. 2001,
53 (6), 965–977. doi:10.1023/A:1013356019431
(translation of Ukrain. Mat. Zh. 2001, 53 (6), 820–829.
(in Russian))
- Romanyuk A.S. The best trigonometric approximations and the
Kolmogorov diameters of the Besov classes of functions of many
variables. Ukrain. Math. J. 1993, 45 (5), 663–675.
doi:10.1007/BF01058208 (translation of Ukrain. Mat. Zh. 1993,
45 (5), 724–738. (in Russian))
- Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the
classes of periodic multivariate functions in the space \(B_{\infty,1}\). Ukrain. Math. J. 2019,
71 (2), 308–321. doi:10.1007/s11253-019-01646-3
(translation of Ukrain. Mat. Zh. 2019, 71 (2), 271–282.
(in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Approximative characteristics and
properties of operators of the best approximation of classes of
functions from the Sobolev and Nikol’skii-Besov spaces. J. Math.
Sci. (N.Y.) 2021, 252 (4), 508–525.
doi:10.1007/s10958-020-05177-2 (translation of Ukr. Mat. Visn. 2020,
17 (3), 372–395. (in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Estimation of some approximating
characteristics of the classes of periodic functions of one and many
variables. Ukrain. Math. J. 2020, 71 (8),
1257–1272. doi:10.1007/s11253-019-01711-x (translation of Ukrain. Mat.
Zh. 2019, 71 (8), 1102–1115. (in Ukrainian))
- Romanyuk A.S., Romanyuk V.S., Pozharska K.V., Hembars’ka S.B.
Characteristics of linear and nonlinear approximation of isotropic
classes of periodic multivariate functions. Carpathian Math. Publ.
2023, 15 (1), 78–97. doi:10.15330/cmp.15.1.78-94
- Romanyuk A.S., Yanchenko S. Ya. Approximation of classes of
periodic functions of one and many variables from the Nikol’skii-Besov
and Sobolev spaces. Ukrain. Math. J. 2022, 74 (6),
967–980. doi:10.1007/s11253-022-02110-5 (translation of Ukrain. Mat. Zh.
2022, 74 (6), 844–855. doi:10.37863/umzh.v74i6.7141 (in
Ukrainian))
- Romanyuk A.S., Yanchenko S.Ya. Estimates of approximation
characteristics and properties of operators of the best approximation
for the classes of periodic functions in the space \(B_{1,1}\). Ukrain. Math. J. 2022,
73 (8), 1278–1298. doi:10.1007/s11253-022-01990-x
(translation of Ukrain. Mat. Zh. 2021, 73 (8),
1102–1115. doi:10.37863/umzh.v73i8.6755 (in Ukrainian))
- Stasyuk S.A. Best approximations and Kolmogorov and trigonometric
widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables. Ukrain. Math. J. 2004,
56 (11), 1849–1863. doi:10.1007/s11253-005-0155-1
(translation of Ukrain. Mat. Zh. 2004, 56 (11),
1557–1568. (in Ukrainian))
- Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the
classes \(B^{\Omega}_{p,\theta}\) of
periodic functions of many variables. Ukrain. Math. J. 2006,
58 (5), 779–793. doi:10.1007/s11253-006-0101-x
(translation of Ukrain. Mat. Zh. 2006, 58 (5), 692–704.
(in Ukrainian))
- Stechkin S.B. On the order of the best approximations of
continuous functions. Izv. Ross. Akad. Nauk Ser. Mat. 1951,
15, (3) 219–242. (in Russian)
- Temlyakov V.N. Approximation of Periodic Functions. Nova Science
Publishers, Inc., New York, 1993.
- Temlyakov V.N. Estimates of the asymptotic characteristics of
classes of functions with bounded mixed derivative or difference.
Proc. Steklov Inst. Math. 1990, 189, 161–197.
(translation of Tr. Mat. Inst. Steklova 1989, 189,
138–168. (in Russian))
- Temlyakov V.N. Multivariate approximation. Cambridge University
Press, Cambridge, 2018.
- Tikhomirov V.M. Diameters of sets in function spaces and the
theory of best approximations. Russian Math. Surveys 1960,
15 (3), 75–111. doi:10.1070/RM1960v015n03ABEH004093
(translation of Uspekhi Mat. Nauk 1960, 15 (3(93)),
81–120. (in Russian))
- Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of
Functions. Kluwer Academic Publishers, Dordrecht, 2004.
- Yongsheng S., Heping W. Representation and approximation of
multivariate periodic functions with bounded mixed moduli of
smoothness. Tr. Mat. Inst. Steklova 1997, 219,
356–377.