References
- Akin-Bohner E., Raffoul Y. Boundedness in functional dynamic equations on time scales. Adv. Difference Equ. 2006, 2006, 1–18. doi:10.1155/ADE/2006/79689
- Bohner M., Peterson A. Dynamical equations on time scales. An introduction with applications. Birkhauser, Boston, 2001. doi:10.1007/978-1-4612-0201-1
- Bohner M., Peterson A. Advances in dynamical equations on time scales. Birkhauser, Boston, 2003. doi:10.1007/978-0-8176-8230-9
- Bohner M., Kenzhebaev K., Lavrova O., Stanzhytskyi O. Pontryagin maximum principle for dynamic systems on time scales. J. Difference Equ. Appl. 2017, 23 (7), 1161–1189. doi:10.1080/10236198.2017.1284829
- Bohner M., Georgiev S.G. Multivariable dynamic calculus on time scales. Springer, Berlin, 2016. doi:10.1007/978-3-319-47620-9
- Bohner M., Karpenko O., Stanzhytskyi O. Oscillation of solutions of second-order linear differential equations and corresponding difference equations. J. Difference Equ. Appl. 2014, 20 (7), 1112–1126. doi:10.1080/10236198.2014.893297
- Bourdin L., Trelat E. General Cauchy-Lipschitz theory for \(\Delta\)-Cauchy problems with Carathodory dynamics on time scales. J. Difference Equ. Appl. 2014, 20 (4), 526–547. doi:10.1080/10236198.2013.862358
- Bourdin L., Stanzhytskyi O., Trelat E. Addendum to Pontryagin maximum principle for dynamic systems on time scales. J. Difference Equ. Appl. 2017, 23 (10), 1760–1763. doi:10.1080/10236198.2017.1363194
- Cabada A., Vivero D. Criterions for absolute continuity on time scales. J. Difference Equ. Appl. 2005, 11 (11), 1013–1028. doi:10.1080/10236190500272830
- Chaikovs’kyi A., Lagoda O. Bounded solutions of a difference equation with finite number of jumps of operator coefficient. Carpathian Math. Publ. 2020, 12 (1), 165–172. doi:10.15330/cmp.12.1.165-172
- Danilov V.Ya., Lavrova O.E., Stanzhyts’kyi O.M. Viscous Solutions of the Hamilton-Jacobi-Bellman Equation on Time Scales. Ukrainian Math. J. 2017, 69 (7), 1085–1106. doi:10.1007/s11253-017-1417-4 (translation of Ukrain. Mat. Zh. 2017, 69 (7), 933–950. (in Ukrainian))
- Hilger S. Ein Maskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis. University of Würzburg, Würzburg, 1988.
- Hilscher R., Zeidan V. Time scale embedding theorem and coercivity of quadratic functionals. Analysis 2008, 28 (1), 1–28. doi:10.1524/anly.2008.0900
- Karpenko O., Stanzhytskyi O. The relation between the existence of bounded solutions of differential equations and the corresponding difference equations. J. Difference Equ. Appl. 2013, 19 (12), 1967–1982. doi:10.1080/10236198.2013.794795
- Karpenko O., Stanzhytskyi O., Dobrodzii T. The relation between the existence of bounded global solutions of the differential equations and equations on time scales. Turkish J. Math. 2020, 44, 2099–2112. doi:10.55730/1300-0098.3373
- Lavrova O., Mogylova V., Stanzhytskyi O., Misiats O. Approximation of the Optimal Control Problem on an Interval with a Family of Optimiztion Problems on Time Scales. Nonlinear Dyn. Syst. Theory 2017, 17 (3), 303–314.
- Ogul B., Simsek D. Dynamical behavior of one rational fifth-orderdifference equation. Carpathian Math. Publ. 2023, 15 (1), 43–51. doi:10.15330/cmp.15.1.43-51
- Pratsiovytyi M., Ratuhniak S. Properties and distributions of values of fractal functions related to \(Q_2\)-representations of real numbers. Theory Probab. Math. Statist. 2019, 99 (2), 221–228. doi:10.1090/tpms/1091
- Pratsiovytyi M., Goncharenko Y., Lysenko I., Ratuhniak S. Continued \(A_2\)-fractions and singular functions. Mat. Stud. 2022, 58 (1), 3–12. doi:10.30970/ms.58.1.3-12
- Stanzhytskyi O., Mogylova V., Lavrova O. Optimal Control for Systems of Differential Equations on the Infinite Interval of Time Scale. In: Kelso S. (Ed.) Understanding Complex Systems. Springer, Cham, 2020, 395–405. doi:10.1007/978-3-030-50302-4_18
- Stanzhytskyi O., Uteshova R., Tsan V., Khaletska Z. On the relation between oscillation of solutions of differential equations and corresponding equations on time scales. Turkish J. Math. 2023, 47 (2), 476–501. doi:10.55730/1300-0098.3373
- Tsan V., Stanzhytskyi O., Martynyuk O. On the correspondence between periodic solutions of differential and dynamic equations on periodic time scales. Georgian Math. J. 2024, 31 (5), 899–908. doi:10.1515/gmj-2024-2003
- Yoshizawa T. Stability Theory by Lyapunovs Second Method. The Mathematical Society of Japan, Tokyo, 1966.