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Dissipativity of dynamical systems on time scales and the

relationship between dissipative differential and dynamical
systems

Tsan V.B.>, Stanzhytskyi O.M., Kapustian O.A.

This work is devoted to study the dissipativity property of dynamical systems on time scales and
relationship between the dissipativity of systems of dynamic equations on time scales and the corre-
sponding systems of ordinary differential equations. It is established that the dissipativity property
is preserved when transitioning from equations on time scales T, to the corresponding ordinary
differential equations and vice versa, provided that the graininess function y, converges to zero
asA — 0.
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Introduction

The theory of dynamic equations on time scales has been a rapidly developing area of
mathematics in recent years (see, for example, [2,3] and the references therein). Such equations
represent a generalization of difference equations (discrete with a constant step — Euler scale),
covering equations with a variable step, or take values from fractal sets [18,19]. These equations
are investigated in [12], where the concept of a derivative (A-derivative) was introduced on any
closed subset in real axis. Such an approach unifies discrete and continuous analyses, as the
A-derivative transitions to the classical derivative, when the time scale T = IR, and in the case
of the Euler scale T = {kn : k € Z}, it transitions to a difference ratio.

Special interest is drawn to the behavior of the solutions of dynamic equations that are de-
fined on a family of time scales T, when the graininess function y, goes to zero as A — 0.
In this case, the intervals of the time scale [to, 1] N T, approach [y, t1]. The question naturally
arises whether solutions of equations on time scales and the corresponding solutions of differ-
ential equations have the same properties. The question of preservation of the boundedness
property of solutions is investigated in the works [1,14,15]. We also note that the existence of
bounded solutions of dynamic equations in the case of Euler time scales has been studied, for
example, in the following works [10,17].The issue of the relationship between the oscillations
of such solutions is studied in the works [6,21]. Similar issues for optimal control problems
are considered in [4, 8,16,20]. The relationship between the existence of periodic solutions of
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systems of dynamic equations on time scales and their corresponding systems of differential
equations is studied in article [22].

In this work, we investigate the dissipativity of systems of dynamic equations on time scales
and the relationship between the dissipativity of dynamic equation systems on the family of
time scales Ty and their corresponding differential equation systems, under the condition that
the graininess function yy — 0as A — 0.

This paper is organized as follows. In Section 2, we briefly introduce the basic concepts of
the time scale theory, and in Section 3, we provide the problem statement and formulate the
main results of the article. Section 4 is devoted to auxiliary propositions necessary for proving
the main theorems. The main results are proven in Section 5. Section 6 provides an illustration
of the main results using an example of a Liénard-type equation.

1 Some concepts of time scale theory

(1) Any nonempty closed subset of the real line is called a time scale T. For any subset A C R,
the corresponding subset of the time scale is defined as Ay = ANT.

(2) For each point t of the time scale T, three functions characterizing the scale are defined.
The forward jump operator o : T — T is such that o(t) = inf{s € T : s > t}; the backward
jump operator p : T — T is defined as p(t) = sup{s € T : s < t}; and the graininess
function p : T — [0,00) is such that u(t) = o(t) —¢.

(3) According to the properties of the scale at points t € T, the points of the scale are divided
into left-dense (LD) if p(t) = t; left-scattered (LS) if p(t) < t; right-dense (RD) if o(t) = t;
and right-scattered (RS) if o(t) > t. If the scale T has a right-scattered maximum M, then
T* = T\ M is defined; otherwise, T = T.

(4) A function f : T — R" is called A-differentiable at t € T if the limit

_ i J(0(8) = f(s)
A1) —hmT

t
s—t (o (
exists in R”. Then the corresponding value f2(t) is called the A-derivative at the point ¢.

(5) A function f : T — R is called rd-continuous if it is continuous at right-dense points of
the time scale T and has a finite limit at left-dense points of this scale.

(6) A function p : T — Ris called regressive if 1+ u(t)f(t) # 0 for all t € T*.

(8) If p is regressive, then the generalized exponential function e,(t, x) is defined using the
expression

ep(t,s) = exp </t§V(T)(p<T))AT) fors,t €T,

where ¢, (z) is a cylinder transformation. The cylinder transformation ¢y, : C;, — Zj, is
defined as

&n(z) = %Log(l + zh),

where Log is the principal logarithm function.
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Theorem 1. If p, q are regressive, then

(i) eo(t,s) =1l andey(t,t) =1;
(ii) ep(o(t),s) = (1+p()p(t))ep(t,s);

(iii) ep(lt,s) = ecp(ts);

(iv) ep(t,s) = ep(ls,t) = ecp(s, t);

(v) ep(t,s)ep(s,r) = ep(t,r).
Theorem 2. If p is regresive, a,b,c € T, then

(2

[ep(c, ‘)]A = —p[ep(c, )]
and

/ab P(t)ep(C,O'(t))At = €p<c,g> _ €p(C,b>.

2 Problem statement and main results

Let D be a domain in IR". We consider the system of ordinary differential equations

dx
with t € R, x € D, and the corresponding system of dynamic equations
Xy = X(t,x)) ()

on the family of time scales T, where t € T, x) : T) — R", and x4 () is A-derivative of x, (t)
on T). We assume thatinfT) = —oco,supT) =00, A € A C R, and A = 0is a limit point of A.
Here and in the following, we will consider time scales T, with A > 0 and the point t = 0
belongs to T, forall A € A.

We also assume that the function X(¢, x) is defined for all + > 0, x € D, it is continuous
with respect to the variables t and x and has bounded partial derivatives with respect to t and
x in every bounded domain of {t > 0} x D, i.e. for every M > 0 there exists L(M) such that

oX(t,x) 90X (t,x)
<
|X(t,x)| + o 5 < L(M), 3)
ift < Mand ||x|| < M. Here | - | is Euclidean norm in R", || - || is a matrix norm induced by the

vector norm. From inequality (3) it follows that there exist locally integrable functions Mg(t)
and Bg(t) such that
[ X(tx)| < Mg, (4)

\X(t,xl) — X(t,?@)’ < BR‘XZ — x1| (5)

for x, x; € Ug. Here and throughout, Ur denotes the set of points x such that ||x|| < R.

Wesset pi 1= sup;c, #a(t), where p(t) : Ty — [0, 00) is the graininess function. If y1y — 0
as A — 0, then T approaches the continuous time scale Ty = R, and the system (2) transforms
into the system (1). Therefore, it is natural to expect that under certain conditions, the dissi-
pativity of the differential equation system (1) implies the dissipativity of the corresponding
dynamic equation system (2) on the time scale T .

Dissipativity of system (1) will be understood in the next sense.
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Definition 1 ([23]). System (1) is called dissipative with respect tot > t, if there exists R > 0
such that for all v > 0 there exists T = T(r, ty) for which the solution x(t; to, x9) of system (1)
with initial conditions (ty, x) satisfying

|xo| <7 (6)
satisfies the inequality
(£, to, x0) | < R
fort >ty +T.

Definition 2 ([23]). System (1) is called uniformly dissipative in ty if, in Definition 1, T is
independent of ty.

We define dissipativity for system (2) analogously.

Definition 3. System (2) is called dissipative with respect to t € [0, +oo)TA, if there exists
R(A) > 0 such that for all ¥ > 0 there exists T = T(r,to, A) for which the solution x(t, to, o)
of system (2) with initial conditions (ty, xo) satisfying

|xo| <7 ()

satisfies the inequality
HX)\(t, to, Xo) H <R

fort >ty+T,teT,.

Definition 4. System (2) is called uniformly dissipative in ty € T, and A < Ag if, in Defini-
tion 3, R and T are independent of ty and A.

We start with the conditions of dissipativity of the system of dynamic equations (2) in terms
of the Lyapunov function V (¢, x).

Regarding all Lyapunov functions that we will consider further, we assume that V) (t, x) is
A-absolutely continuous [9] with respect to ¢ and uniformly continuous with respect to x in a
neighborhood of each point. Additionally, it satisfies a local Lipschitz condition with respect to
x for each 0 < A < Ag in the domain {t € [0, T]t, } x Ug with a Lipschitz constant depending
on R and T. This fact will be denoted as V € Cj,.

Definition 5. The Lyapunov operator corresponding to system (2) will be denoted as d°/At,
defined by the relation

dOV(t, X) T
—_— = lim
At t—ty+0,teT, t — tg

[V (t, xx(t, to, x0)) — V (to, x0)] -

From [7] it follows the next comment.

Remark 1. If V(t,x) € Cy then for almost all t the Lyapunov operator will coincide with the
A

A-derivative of the function V in system (2), which denoted as V.

Then the following theorem holds.
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Theorem 3. If system (2) on time scale T, A > 0, has a nonnegative Lyapunov function
V(t,x) € Cy, defined fort > ty, t € T, x € D C R", with the following properties:
1)
inf V(t,x) =Vp(A) = 00, p— oo, 8
te(to, o), [lx[|=p
2) forx € Ug, = {||x|| > Ro,t > to} there exists C = C(A) > 0 such that

V(t,x) < —CM)V(Lx), teT,, 9)

A
and for x € U, functions V and V (t, x) are bounded above,
then system (2) is dissipative.

Remark 2. A similar result to Theorem 3, under different conditions and using a ditferent
method, was obtained in [1, Theorem 3.4].

Remark 3. If in the conditions of Theorem 3 V (t,x) and C do not depend on A and relation (8)
holds uniformly over A < Ay, then system (2) is uniformly dissipative.

We obtain an inverse result.

Theorem 4. If there exists Ay > 0 such that system (2) is dissipative for every A < Ay and
conditions (4), (5) are satisfied, then for each system (2) there exists a non-negative function V
satisfying conditions (8), (9) for A < Ay.

Studying the dissipativity of the system of dynamic equations, we also investigate the con-
ditions under which the dissipativity of the system of dynamic equations implies the existence
of a similar property in the corresponding system of differential equations, as well as the in-
verse result.

Theorem 5. Let X(t, x) satisfies condition (3) and there exists Ay such that for all A < Ay the
system of dynamic equations (2) is uniformly dissipative with respect toty € T, and A. Then
system (1) is uniformly dissipative with respect to t( for ty > 0.

Theorem 6. Let X(t,x) satisfies condition (3) and system (1) is uniformly dissipative with
respect to ty for ty > 0. Then there exists Ag such that the dynamic system (2) is uniformly
dissipative with respect to tg and A for all A < Ay.

3 Auxiliary results

In this section, we present several auxiliary results necessary for proving the main theo-
rems. The following lemma will be applied to study the dissipativity conditions of system (2).

Lemma 1. Let tp € Ty, yy : Tp — R. Ify,(t) is a function defined for t > ty,, whose
A-derivative y¥ satisfies the inequality

yh < A()ya + B(t) (10)

for almost all t > ty, where A(t),B(t) € C,4y(T) and 1+ u,(t)A(t) > 0 forallt € T, then for
t > to, the inequality

ya(t) <yalto)ea(t to) + teA(trU(T))B(T)AT

to

holds.
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Proof. Inequality (10) can be equivalently rewritten as

(D)2 < A (ya(e () = ma(bya (1)) + B(t).

Thus
yAB X+ pa(DA(H) < A(Dya(e(t) + B(1).
From the statement of the lemma we get 1 + p, () A(t) > 0, then

A(t) B(t)

O < T man O T ae

yi(t) <

: —A(t)
Since 570, (1)

T OAT = (6A)(t), we have

B(t)
L+ pa(t)A(t)

Multiplying by the generalized exponential function both sides of e 4 (¢, ty) we obtain

ya(t) < —(A)(Byalo(t) +

B(t)

ecalt o)y (1) < —ecalt)(SAN D)) + ecalt o) e

Then we get

B(t)

(eca( t)yn)2 () = ecalt, to)ya (1) + ecalt o) (DA) (Hya(o(t) < ecalt to)5 +ua(D)A(E)

Integrating both sides of this last inequality from ¢( to f, we obtain

B(7)

T+ (0A@ T

t
eca(t, to)yr(t) —ecal(to, to)yr(to) < /t eca(T, to)
0

Using Theorem 1 (i), we have e 4 (t, fp) = 1 and it can be shown that

eca(t, to)yr(t) <ya(to) + /t: eca(T, fo) 14 ;5814(1)
(7)

1 /f esa(T, to) B(t
t

€eA(t/t0)yA(t0) - o ecalt to) 1+ pr(T)A(T)

AT,

AT.

ya(t) <
Therefore, by the properties of exponential function (Theorem 1 (v)), we get

B(1)
T mmAD "

y?\(t) < )yA(tO) + /tot e@A(t/T)

eca(t to

Since m = ea(t, tp) and 5 +ii?rt)’;)(r) = eAe(/}((tgl)T) = ea(t,0(t)) (Theorem 1 (ii)—(iv)), we
get the desired result

ya(t) <ealt, to)ya(to) +/tteA(t,U(T))B(T)AT.
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Lemma 2. Assume that V : TxR" — R, V € C/(T x R") and x : [0, Tt — R" is delta
differentiable on TF. Letz : [0, T]t — R, z(-) = V(-,x(-)), then z is delta differentiable at t and

ZA<t0) = %(to, XO) + F(O’(to), x) . xA(to),
where F(c(ty), x) = (F1(c (), x), ..., Fa((to), %)) and

E(o(to),x) = | 2L (o(te) xa (o (b)), xia(o(t0)), x

0 I
+ hpu(to) xP (to), Xit1(ko), - -, Xu(to) )dh.
Proof. Fix ty € [0, T]*. First we consider the case, when t is right-dense. In this case ¢ (ty) = to,
x is delta differentiable and continuous at tj, and

lim  a1((to, x0),(t,x)) =  lim ),Bz-j((to, x0), (£,x)) =0.

(£,x)=(to,x0) (%)= (to,x0
Using the definition of completely delta differentiable at point function [5, Def. 6.97], we
have

z%(tp) = lim V(t, x) — V(to, xo)

t—ty t—1p

i AU f0) + X Bilxi(t) — xilto)) + aa (E — to) + Xy B ((xi(E) — xi(ho)))
-5t t—to
oV oV

= E(to,xo) +i:21 a—xi(fo, x0) - xf(to).

Let Fi(t,x) = §¢(t,x) and F(t,x) = (Fi(t,x), Fa(t, x), ..., Fa(t, x)), then

oV
ZA(to) = A_t<t0, XO) + P(to, x) . xA(to).
Next consider the other case, when t is right-scattered. Let x(c(tp)) = x(0p), then we have
x(00) — x(to) = p(to)x"> (to) and

V (oo, x(00)) — V(to, x(to))

2%(ty) =
u(to)
_ i V (00, x1(00), - - -, Xi(00), Xi+1(to), - - -, Xn(t0))
i3 xi(00) — xi(to)
_ Voo, xl(Uo)w~-/xifl((fo)/xi(to)/---,xn(to))xg(t )+ V(00, x(to)) — V(to, x(to))
xi(o0) — xi(fo) e u(to) |
Since V € C!(]0, T] x R"), by applying the mean value theorem, we obtain
(on x) = V (09, x1(00), - - -, Xi(00), Xi+1(t0), - - -, Xu(to))
fil) % (o0) — x(to)
~ V(o0,%1(00), - - -, Xi-1(00), Xi(to), - - - , Xu(t0))
x;i(00) — xi(to)
1
=, S—Z(Uo, x1(00), - - -, Xi~1(00), xi + h(xi(00) — xi(to)), Xi+1(to), - - -, Xn(to))dh

19y
_ /0 == (00,31(00), -, i1 (00), % + hyu(to)x (to), xix1(to), - - . xu(t0) )dh.
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Therefore,

oV

z8(tg) = E(to' x0) + ; Fi(09, x)x™ (o).

We set F(t,x) := (Fi(t,x),F2(t,x), ..., Fu(t,x)) to obtain

ZA(to) = aA—‘;(tO, x()> + F(O’(], X) -XA(t())‘

A
Remark 4. Given system (2), we consider the function V (t, x) defined as

V() = () + Y F(t), 1) Xl 12) = S (1,x) + F(o(t), 10) - X(£,x1).

At =~ At
A
The function V (t, x) represents the A-derivative of the function V (t, x) according to system (2).

Lemma 3 (15]). Lettg € T, to+ T € T,, x, and x are the solutions of (2) and (1) on [tg, to + T]
and on [ty, tg + T|r,, respectively. Then if the initial conditions x(ty) = x,(tg) = xo, X0 € D,
are satisfied, then

[x(t) —xa ()] < u(A)K(T)

holds, where p(A) = SUP ¢ 1o to-+ Tl ua(t) and K(T) = eC(T+1) (C + %) + 3C is constant.

4 Proofs of main results

Proof of Theorem 3. Indeed, according to the condition (9) we have

A
V(tx) < —CV(t,x) fort > to,||x|| > Ro,

and if ||x|| < Ry, there exists positive constant C; > 0 such that

A
V(t,x) <Cy, V(tx)<Cy. (11)

Thus, from (9) and (11) we have the next inequality

A
V(t,x) < —CV(t,x)+C, forallt>tyand x € R", (12)

where C, > 0is a certain constant.
Now using Lemma 1 to inequality (12) and Theorem 2, we obtain

V(t,x) < V(to,x0) - e—c(t to) + /tt Cae_c(t,0(7))AT

= V(to, x0) -e_c(t,to) + % (I—e_c(tto))

C C
< V(to,x0) -e-c(t,to) + = < e-clt,to) sup V(to,x0) + -

|xo| <7
Hence, there exists T = T(to, 1, A) such that for t > ty + T the inquality
V(t,x) < GCj

holds. From here according to the condition (8), we get dissipativity of system (2) for
allA > 0. O
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Proof of Theorem 4. From the dissipativity of (2) it follows that for any r > 0 there exists
T = T(r,to,A) > 0 such that the solution x, of (2) with initial conditions (to, xo), to € [0, To]T,
and x satisfying |xo| < r for t € [ty + T;+4o0)t, is contained in the sphere of radius R,
i.e. ‘X)‘(t; to,Xo)‘ < R.

Let us consider the next function

ft-R (>R
G(g)_{o, if 0<¢ <R

This function is continuous and takes only non-negative values. Moreover, it is defined for
{>0,G(l) = +oo0as{ — +ooand

G -GN =<zl (13)
We define V (¢, x) as follows

V(t,x) = sup {G(|xa (s, 1)) - €7,
>0
wheret; = o(t+ 1) =inf{s € Ty : s >t + T}.
Note that if T > T then, according to the dissipative nature of system (2), the solution x,
enters a ball of radius R, implying that G(||x||) = 0. Hence,

V(t,x) = sup {G(||xr(tr;t,x)]]) e }.
T€[0,T]

From the definition of G, we get G(||x||) < V(t,x). Therefore, V(¢ x) satisfies the condi-
tion (8).

Now let us show that that V (¢, x) satisfies the local Lipschitz condition with respect to
variables t and x. Suppose (t,x) and (f, %) such that t,f € [0, To]r,, t < f, and x, £ are included
in a ball of radius r.

Due to continuous dependence of solution of system (2) on initial data on a finite interval
of time scale [13, Theorem 3.2] we can guarantee that for all T € [0, T] for any initial conditions
t,t € [0, Tolt, and x, 2 € U, solutions x, (t; t,x) and x, (f;f,£) are included in a ball of the
fixed radius r. Then there exists N, such that ||x,(t;t, x)|| < N;, ||xA(f-; £ 2)|| < N,. Hence,
by (13), we have

A~

V(t,x) = V(£ 2) = sup {G([xa(t;t,x)[)e"} — sup {G(|lxa(Fe;E, 2)[)e”}

7€[0,T] €[0,T]

< sup {[G([xa(te;t, 0)I) = G(llxa(Fe;, 2)[]) e} (14)
7€(0,T]

< sup {|[xa(tot x) — X (Ef 2)[le" ).
7€[0,T]

Let us consider in more detail the difference
”x)\(tT; t/ x) - x)\(fT; Z'\/ xA) H/
where x, (t1;t, x) is the solution of (2) with initial conditions (t, x). Then

xa(te;t, x) — xa (B £, 2)|) < |lxa(test, x) — xa(Best, x) || + |xa (B t, x) — xp (B £, 2)]]. (15)
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Let us estimate first term in (15). Since the solutions x) (t;; t,x) and x, (f;t, x) can be rep-
resented as

xXp(te bt x) = x + /ttT X(s,x)(s;t,x))As,
xp(Fr;t, x) = x + /tET X(s,xx(s;t,x))As,
we obtain the following estimate
lxa(test, x)—x) (E; t, %) ||

tr .
< x—l—/ X(s,xA(s;t,x))As—x—/ X(s,x)(s;t,x))As
t t

tr tr Fr
< H/ X(s,xA(s;t,x))As—/ X(s,x,\(s;t,x))As—/ X(s,x)(s;t,x))As
t t tr

tr .
< [NIXGsnstalas,  t<t <t
tr

Let us denote

max | X(t,x)|| = M,, (16)
te(0, Tl [Ix[[ <N

then
. R R
xa(test, %) — x (e £, 3)|| < /t MyAs < My|fe — to| < My|F—t]. (17)

Now estimate the second term in (15), namely ||x)(fr;t,x) — x)(£1;,£)|. Let us denote
x)(£t,x) := x*, then we get

lxa(Fes t, ) — xa (Fes B, 2)|| = lxa (BB, 1) — x4 (B £, 2)]).

Since x, (fr; £, x*) and x, (£; f, £) we rewrite as

Since X(t, x) is Lipschitzian with constant K with respect to x, we have

e ~ ~
|xp(E; t, x¥) — xp) (B £, R) || < ||x™ — || +K/; l|xa(s;t, x*) — x)(s;t, £) || As.
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Hence, using an analogue of the Gronwall inequality for time scales [2, Theorem 6.4] for
se [t fr]m and Lemma 1 [11], we obtain

lea(Fei b x") — xa (B, 2) ) < exc(Be, Dl — 2

< M — 2] < KD (|xt x| 4 2 - 2).

(18)

Considering x* := x,(f;t,x), we have ||x,(ft,x) — x|| < ftf IIX(s,x1(s;t,x))||As. Therefore,
by (16), for t; € [0, #;] we obtain

1x* — x| = xa(Bt, %) — x| < /fMyAs < MJF— 1.
Substituting the last equality into (18), we get
la(Eesx) = (e b ) < <D (M — o] + | — 2] (19)
Thus, from (15), (17) and (19), we obtain

A (b, x) — x4 (B £, 2) || < My|E— t] 4+ KED (M| — £ 4 ||x — 2]))
< My (K=t L 1)|F — ¢ 4 KE=D) 12 — x|,

For sufficiently small p) > 0 the point f; is on the interval [f + 7;f + 7 + 1], so we have
fr —t: < f—t+1. Hence, from the condition (14), taking into account the dissipativity of
system (2) and inequality (4), we have

V(tx) = V(E,2) < sup {(Mr( D +1)[F—t] 4+ KDz — x| ) e7 |
€[0,T] (20)
< MR(EK(T+1)+T + 1)|f_ t’ +€K(T+1)+THJ? _ x”

Similarly, performing transformations as in (14)—(20), we can obtain the estimate

V(E£) = V(,x) < sup {(Mr(e D+ 1))t 1] 4+ KD x— g ) 7 |
T€[0,T]

< MR(eK(T+1)+T + 1))t + eK(T+1)+T||x — 2.
Therefore, we have
V(tx) = V(E2) > —Mg(eKTHUFT 1))t — ] 4 KTHDFT | ¢ — 2. (21)
Thus, from (20) and (21), we obtain
V(t,x) = V(£ 2)| > Mg(eKTHDHT L 1) |t — f| 4 KTHDHT ) x — 2]

So, we conclude that the function V (¢, x) is Lipschitzian with respect to f and x.

Next we will show that condition (9) holds. For each point t € T there are two possible
cases: when the point ¢ is right-scattered, i.e. u,(t) > 0, and when the point t is right-dense,
i.e. up(t) = 0. Let us denote

Velt, ) = G(|xa(o(t+7);t,x)]) - €.
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Then for u, (t) > 0 we obtain

Vet +pa(t), x(t + pa(t);t,x))
= G([lxa(o(t+pr(t) + 1)t + palt), x(t 4+ pr(t); t,x))| e (22)
= G(|lxa(c(t + pa(t) + T)st+ pa(t), x(t + pa(8);,x)) [ e HFaeralt),

From the uniqueness of solutions of (2) on time scales [7, Proposition 4], we get
(O (E+pa(t) + 1)t 4 pa(t), x(t+ua ()it x)) = xa(o(t+pa(t) + 1)1, x). (23)
Substituting (23) into (22) and denoting T/ = T + u, (t), we obtain
Ve(t+ (), x(t+ pa(D;1,0)) = G(llaa (ot + )it x)) e e = Vo (8, x)e 70,

Note thatif T € [0, T] then T/ € [p)(t), T+ pur(t)],sot+ 7 € [t+pup(t),t+ T+ pp(t)]. Since
from the dissipativity ||x)(t + 7/;t,x)|| < Rwhent+ 1 > t+ T, then G(||x)(t+7/;t,x)||) =0
when t + 1/ >t + T. Hence,

VI(t+pa(t), x(t+pa(t);t,x)) = sup V(b4 pa(t), x(t + pa(t);t,x))
T€[0,T]
= sup Vo (t, x)e #alt)
T'elur(t), T+pa(t)]
= sup Vg(tx)e *l)
T'E[ua(t),T]
< sup Vu(tx)e #®),

T'€[0,T]

that is,
V(t+pua(t), x(t+ ua(t);t, x)) < V(t,x)e i (24)

Let us consider the Lyapunov operator corresponding to system (2). Since, V (¢, x) satisfies
a Lipschitz condition with respect to t and x, it is absolutely continuous with respect to t and
x, and therefore, for almost all t and x, it has derivatives (A-derivative with respect to t and
ordinary derivative with respect to x). By (24), for a right-scattered point ¢, we obtain

dOV(t,x)_ 1
A = gy V), x(E+ b x) = V()]
. x)e A X)| = x) - w
< [Vt x)e O —v(t,x)] = V() ot
e A 1 .

Since lim,, ()0 = —1, from Remark 1 it follows that

Ha(t)

V(t,2) < —Clun)V (L),

where C(p,) = 1’;;(}3@ 0

If ¢ is right-dense, i.e. ) (t) = 0, then there exists a sequence {h,}, h, € T,, such that
h, — t+ 0. Let us consider

Vet +hy, x(t 4 hust,x)) = G(||x(t+ hy + Tt + Ry, x (84 B £, x) ||)e”
= G(||x(t +hp + T3t 4 hy, x(£+ Iy £, x)|))eTHine ™,
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By the uniqueness of the solution of (2), x(t 4+ hy + T; t + hy, x(t + hy; t,x)) = x(t + hp + T3 8, x).
Then replacing T + h, = 1, we obtain

V(t+hy,x(t+hy;t,x)) = sup Ve(t+ hp, x(t+ hp;t, x))

T€[0,T]
=  sup Vye "< sup Vi (tx)e " < V(t,x)e .
T € [hn, T+hy] T2 €[0,T]

Subtracting V (¢, x) from both sides and dividing by &, > 0, we get

V(t+hy, x(t+hyt,x)) — V(tx) <V x)e—hn 1
hy - ’ h,

Hence, by the definition of the A-derivative at dense points as h, — 0 we have

VA(tx) < =V (tx).
Therefore, we have established that condition (9) holds. m

Proof of Theorem 5. Let choose an arbitrary r > 0. Without loss of generality, it can be assumed
that tp = 0 € T,. From the conditions of Theorem 5, if x)(f;0, x¢) is a solution of (2) with
initial conditions (0, xp), where |xg| < 7, then for all A < A there exists T = T(r) such that the
following inequality

|x/\(t,0,X0)| <R

holds for t € [T, 400)T,.

By the continuous dependence of solution of the system (2) on initial data on a finite inter-
val of time scale [13, Theorem 3.2] it follows that there exists M > 0 such that |x,(¢,0, x9)| < M
forallt € Ty, t < T and |xo| < r. Thus, condition (3) holds for t € [0, T]t, and x| < M.

Let x be a solution of system (1) such that x(0) = x,(0) = xg at the initial point fp = 0. Let
us choose T = inf{s € Ty|s > T}. Since T > T, then the inequality |x,(T,0,x)| < R holds
for it. Because of Lemma 3 concerning the proximity estimation of solutions of the differential
equation system and the corresponding system of dynamic equations on time scales with the
same initial conditions, for t € [0, T] the inequality

|x(t,0,x0) — x(t,0,x0)| < urK(T) =0

holdsas A — 0.
Note that, since 1y — 0as A — 0, then always we can choose A; < Agsuch that 4, K(T) < 1
for all A < A;. Altogether we have

|X(T,0, XQ)’ < ‘X(T,O,XO) - X/\(T,O,Xo)| + |X)\(T,O,x0)’ <1+R (25)

Let y,(t) be a solution of (2) such that x(T,0,xp) = yx(T). Since system (2) is uniformly
dissipative with respect to tgp and A, then by putting » = R + 1 in inequality (7), we obtain that
there exists T1 = T1(R + 1) such that from the inequality |y, (t1)| < R + 1 it follows that

lya(t, T, x(T,0,x0))| <R for t € [T+ Ty;+00)T,.

Lett; = inf{s € Ty : s > T+ T1}. Then |y, (t1, T, x(T,0,x0))| < R. As earlier, we choose
A2 < Aq such that for all A < A the point t; is in the interval [T + Ty, T + Ty + 1], and the
inequality |x(t, T, x(T,0,x9)) —ya(t, T, x(T,0,x0))| < upK(t1) < 1 holds for t € [T, t1].



440 Tsan V.B., Stanzhytskyi O.M., Kapustian O.A.

Similarly to (25), we obtain |x(t1, T, x(T,0,x9))| < R+ 1. By the uniqueness of the solu-
tion of system (1), we have x(t, T, x(T,0,xp)) = x(t,0,xp), from which and from the uniform
dissipativity of system (2) in ty, we obtain

\x(t1,0,x0)| < R+ 1,

where t; € [T+ Ty, T+ T+ 1].
Continuing this process, for any k € IN we have

|X(tk,0,XQ)’ < R+1,

where t} is the smallest point in the interval [T + kT, T + kT; + 1], .

Since x(t,tp, xg) continuously depends on the initial data, the solution of (1) also is in a
fixed ball of radius Ry > R on the interval (#, t,1). Therefore, according to Definitions 1, 2
for R = Ry, system (1) is uniformly dissipative with respect to ty > 0. O

Proof of Theorem 6. Let us choose an arbitrary » > 0. Without loss of generality, it can be
assumed that ty = 0. From the conditions of Theorem 6, if x(f,0, xo) is a solution of (1) with
initial conditions (0, xg), where |xg| < r, then there exists T = T(r) such that the following
inequality

|x(t,0,x0)] <R

holds for t € [T, +c0).

By the continuous dependence of the solution of system (1) on initial data on a finite in-
terval it follows that there exists M > 0 such that |x(t,0,xp)] < M forallt € R, t+ < T and
|xo| < r. Thus, the condition (3) holds for t € [0, T] and ||x|| < M.

Let x) be a solution of system (2) such that x,(0) = x(0) = xp at the initial point
to=0¢€T,.

Let us choose T = inf{s € T, : s > T}. Since T > T, then the inequality |x,(T,0,x0)| < R
holds for it. Because of Lemma 3 concerning the proximity estimation of solutions of the dif-
ferential equation system and the corresponding system of dynamic equations on time scales
with the same initial conditions, for ¢ € [0, T]t, the inequality

x)(t,0,x0) — x(t,0,x9)| < upK(T) -0 as A — 0
H

holds.
Note that, since yy — 0as A — 0, then always we can choose A; < Agsuch that 4, K(T) < 1
for all A < Aq. At the same time, we have

|xA(T,0,x0)| < |xA(T,0,x0) —x(T,0,x0)| + |x(T,0,x0)| <1+ R. (26)

Let y(t) be a solution of (1) such that x,(T,0,x9) = y(T). Since system (1) is uniformly
dissipative in fy then by putting » = R + 1 in inequality (6), we obtain that there exists
T1 = T1(R + 1) such that from the inequality |y(T)| < R + 1 it follows that

\y(t,T,xA(T,O,xo))| <R for t >T+T;.
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Lett; =inf{s € Ty :s > T+ T1}. Then
ly(t1, T,xA(T,0,x0))| < R.

As earlier, we choose Ay < Aj such that for all A < A, the point ¢; is in the interval
[T + Ty, T + T1 + 1)1, and the inequality

|xA(t, T,x(T,0,x0)) —y(t, T,x(T,0,x0))| < urK(t1) <1

holds for t € [T, t;]r,. Similarly to (26), we have |x,(t1, T, x(T,0,xp))| < R+ 1. By the unique-
ness of the solution of system (2) on initial data on a finite interval of time scale [13, Theo-
rem 3.2], we obtain x, (t, T, x(T,0,x9)) = x(¢,0,xp). From here, we get

|X)L(t1,O,X())| < R+1,

where t; € [T+ T, T+ Ty + 1].
Continuing this process, for any natural number k, we have

|xA(tk,O,x0)| < R+1,

where t € [T+ kT, T + kT + 1].

Since x, (¢, to, xp) continuously depends on initial data on a finite interval of time scale
[13, Theorem 3.2], the solution of (2) also is in a fixed ball of radius R; > R on the interval
[t te+1]T,. Therefore, according to Definitions 3, 4 for R = Ry, (2) is uniformly dissipative
with respect to ty and A. O

5 Example

Let us illustrate the results of our theorems to the Liénard-type equation.
We consider the differential equation

x" + (cosx +2)x" +x = 0. (27)

To establish the dissipativity of this equation, we rewrite it in the form of a system

Yoy 8)
Yy = —(cosx +2)y —x.

Let
x x x2
F(x):/ cost+2dt = sinx + 2x, G(x):/ tdt:7
0 0
and
x 2
W(x,y) = (F(x) — 2x)y + G(x) +/0 (cost+2)(F(t) —2t)dt+1+ y?
x2 X yZ
:ysinx+?+/ (Cost+2)sintdt+1+3
0
2 2
:ysinx—k%+(5—|—cosx)sin2§+1+y7

1
= §y2+ysinx+ (5+cosx)sin2§+1,
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then we set a Lyapunov function V (¢, x) such that

W(x,y))*—C, for (W(x,y))* > C,
Vi - { W) or (W(x,y))
0, for (W(x,y))* <C.
We consider W as a quadratic form in terms of y. Given that 0 < 1 < cosx +2 < 3, we
obtain W — co as ¥ = y/x2 + y?> — co. We can choose a > 0 such that V(x,y) € Cy. Using the
equality

0
dd_I;V = —(2y% 4 xsin(x)),
we get that the condition
dO—V < -CV (29)
at —

is satisfied in the region r > ry. Hence, it follows that for an appropriate C the inequality
(29) holds for V(x,y) everywhere. Consequently, the dissipativity of system (28) follows from
the dissipativity conditions of the system of differential equations in terms of the Lyapunov
function [23, Theorem 11].

Let us construct a solution to system (28) with initial conditions xg
yo = y(0) = 0 and draw it in Figure 1.

= x(0) = 2,
2 f T T T T T T T T T

|II
I|
|
1.5 [\
|II
|II
1

c \

';}" 05T I\I‘\

= \
N
0f B—
i
051 /
_1 i i I I I I I I
0 5 10 15 20 25 30 35 40 45 50
t
Figure 1. The solution of system (28) on the interval [0, 50]
Let us consider the corresponding dynamic equation
x4 4 (cosxy +2)xf + x4 =0 (30)
on the set of scales T)ywhere y\ = supy, pa(t).
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The time scale is constructed in such a way that continuous intervals alternate with
discrete ones (see Figure 2), and the density of the scale is regulated by the multiplier A so that
asA —0,uy — 0.

06 r

0.4 r

-02 r

-06

-0.8 -

Figure 2. Segment of time scale [0,10]r,

Let us also rewrite dynamic equation (30) in the form of a system

A
x)\ =Y (31)
A _( *x% +1 —
yp = —(e YA — X
30 20 -
25 20+ \‘Ili
20 ‘\"
10 /
15| 1 |‘
10 =i '—‘M\{— A‘/I\'\ f’l I\I ‘f‘ ‘
s - : v
= s = 10 y |‘
g e il \
&l |‘
-30 -
-10 \
15 b -40 - [
-20 ; : . : : ‘ ‘ -50 : ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
t t
(a) xa(t) (b) ya(t)

Figure 3. Plot of solutions for A = 0.65



Tsan V.B., Stanzhytskyi O.M., Kapustian O.A.

444
14 -
12F
5.
10
of ——vﬂ— \/ 8 |
_ \'\
I}
! 0 /__,\fl“(_ J\jl‘ I e j"\
2+ ‘” |‘| L
6 ! “
4+ “l
|
*s 2 0 50 " 100 120 s 20 40 oy o 00 120
t t
(a) xa(t) (b) ya(t)
Figure 4. Plot of solutions for A = 0.6
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Figure 6. Plot of solutions for A = 0.3
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Figure 7. Plot of solutions for A = 0.1
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Figure 8. Plot of solutions for A = 0.05

And let us constuct its solution on the interval [0,50]t, for different values of A. So, for
A = 0.65,0.6,0,45,0.3, 0.1, 0.05, we obtain Figures 3, 4, 5, 6, 7 and 8, respectively. We see that,
as A decreases, the solutions of the dynamic system (31) approach solution of the differential
equation (27) and exhibit dissipative behavior.
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PoboTa mpucsstTyeHa AOCAIAXKEHHIO BAACTUBOCT] AVCUIIAaTMBHOCTI AMHAMIiUHMX CHCTEM Ha 4aco-
BUX IIIKaAaX Ta BiATIOBIAHVIX 3BMUAlHMX AMdpepeHIIiaAbHMX PiBHSHD. BcTaHOBAEHO, IO BAACTUBICTD
AVICUTIATUBHOCTI 36epiraeTbc51 TIpU TIepexoAi BiA piBHSIHD Ha 4acoBMx Inkasax T) A0 BiATIOBIAHMX
3BMYAMHMX AMdpepeHIiaAbHMX PiBHSIHD Ta HaBIaKM, KOAM (PYHKIIISI 3epHMUCTOCTI }) IPSIMY€E AO HY-
asnopu A — 0.
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