References
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Math. 2023, 11 (21), 4487. doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Math. 2021, 9 (2), 148. doi:10.3390/math9020148
- Antonova T., Dmytryshyn R., Kurka R. Approximation for the ratios of the confluent hypergeometric function \(\Phi_D^{(N)}\) by the branched continued fractions. Axioms 2022, 11 (9), 426. doi:10.3390/axioms11090426
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a, b; c, d; z_1, z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
- Antonova T., Dmytryshyn R., Sharyn S. Generalized hypergeometric function \({}_3F_2\) ratios and branched continued fraction expansions. Axioms 2021, 10 (4), 310. doi:10.3390/axioms10040310.
- Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6\). Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
- Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s functions \(F_D\) ratio by Nörlund’s branched continued fraction in the complex domain. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
- Antonova T.M., Sus’ O.M. Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions. J. Math. Sci. 2018, 228 (1), 1–10. doi:10.1007/s10958-017-3601-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2015, 58 (4), 7–14. (in Ukrainian))
- Antonova T.M., Sus’ O.M, Vozna S.M. Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions. Ukrainian Math. J. 2022, 74 (4), 501–518. doi:10.1007/s11253-022-02079-1 (translation of Ukrain. Mat. Zh. 2022, 74 (4), 443–457. doi:10.37863/umzh.v74i4.7031 (in Ukrainian))
- Baran O.E. Approximation of functions of multiple variables branched continued fractions with independent variables. Cand. Phys.-Math. Sc. (Ph.D. ) Thesis in Math. Anal. Pidstryhach IAPMM NASU, Lviv, 2014. (in Ukrainian)
- Bodnarchuk P.I., Skorobohatko V.Ya. Branched Continued Fractions and Their Applications. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
- Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
- Bodnar D.I. Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions. J. Math. Sci. 1993, , 1155–1158. doi:10.1007/BF01098839 (translation of Mat. Metody Fiz.-Mekh. Polya 1990, 32, 40–44. (in Russian))
- Bodnar D.I., Manzii O.S. Expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction and its limit behavior. J. Math. Sci. 2001, 107, 3550–3554. doi:10.1023/A:1011977720316 (translation of Mat. Metody Fiz.-Mekh. Polya 1998, 41 (4), 12–16. (in Ukrainian))
- Bodnar D.I. Multidimensional C-factions. J. Math. Sci. 1998, 90, 2352–2359. doi:10.1007/BF02433965 (translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 39–46. (in Ukrainian))
- Bodnar D.I. Multidimensional generalizations of continued fraction. Mat. Metody Fiz.-Mekh. Polya 2003, 46 (3), 32–39. (in Ukrainian)
- Cuyt A.A.M., Petersen V., Verdonk B., Waadeland H., Jones W.B. Handbook of Continued Fractions for Special Functions. Springer, Dordrecht, 2008.
- Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
- Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Sym. 2024, 16 (02), 220. doi:10.3390/sym16020220.
- Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\). Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
- Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R.I., Sharyn S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
- Dmytryshyn R.I. Some Classes of Functional Branched Continued Fractions with Independent Variables and Multiple Power Series. Dr. Phys.-Math. Sc. Thesis in Math. Anal. Vasyl Stefanyk PNU, Ivano-Frankivsk, 2018. (In Ukrainian)
- Dmytryshyn R.I. The multidimensional generalization of g-fractions and their application. J. Comput. Appl. Math. 2004, 164–165, 265–284. doi:10.1016/S0377-0427(03)00642-3
- Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L.S. On convergence of function \(F_4(1, 2; 2, 2; z_1, z_2)\) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9 (3), 767–778. doi:10.23939/mmc2022.03.767
- Hoyenko N., Antonova T., Rakintsev S. Approximation for ratios of Lauricella-Saran fuctions \(F_S\) with real parameters by a branched continued fractions. Math. Bul. Shevchenko Sci. Soc. 2011, 8, 28–42. (In Ukrainian)
- Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of the Norlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian)
- Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
- Kaliuzhnyi-Verbovetskyi D., Pivovarchik V. Recovering the shape of a quantum caterpillar tree by two spectra. Mech. Math. Methods 2023, 5, 14–24. doi:10.31650/2618-0650-2023-5-1-14-24
- Kaminsky A.A., Selivanov M.F. On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity. Int. Appl. Mech. 2006, 42, 115–126. doi:10.1007/s10778-006-0066-3
- Kuchminska Kh.Yo. Corresponding and associated branched continued fractions for double power series. Dop. AN UkrSSR. Ser. A. 1978, 7, 614–618. (in Ukrainian)
- Kuchminska Kh.Yo. On the Sleszynsky-Pringsheim Theorem for the three-dimensional generalization of continued fractions. J. Math. Sci. 2022, 265 (3), 408–422. doi:10.1007/s10958-022-06061-x (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 60–71. (in Ukrainian))
- Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach IAPMM NASU, Lviv, 2010. (in Ukrainian)
- Kuchminska Kh.Yo., Vozna S.M. Developent of an \(N\)-multiple power series into \(N\)-dimensional regular \(C\)-fraction. J. Math. Sci. 2020, 246 (2), 201–208. doi:10.1007/s10958-020-04730-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 70–75. (in Ukrainian))
- Komatsu T. Asymmetric circular graph with Hosoya index and negative continued fractions. Carpathian Math. Publ. 2021, 13 (3), 608–618. doi:10.15330/cmp.13.3.608-618
- Lorentzen L., Waadeland H. Continued Fractions with Applications. Noth Holland, Amsterdam, 1992.
- Manzii O.S. Investigation of expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction. Approx. Theor. and its Appl.: Pr. Inst. Math. NAS Ukr. 2000, 31, 344–353. (in Ukrainian)
- Murphy J., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fractions. J. Comp. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050x(78)90002-5
- O’Donohoe M.R. Application of Continued Fractions in One and More Variables. Ph.D. Thesis. Brunel University, London, 1974.
- Siemaszko W. Branched continued fractions for double power series. J. Comp. Appl. Math. 1980, 6 (2), 121–125. doi:10.1016/0771-050x(80)90005-4
- Skorobohatko V.Ya. Theory of Branched Continued Fractions and Its Applications in Computational Mathematics. Nauka, Moscow, 1983. (In Russian)
- Wang R., Qian, J. On branched continued fractions rational interpolation over pyramid-typed grids. Numer. Algor. 2010, 54, 47–72. doi:10.1007/s11075-009-9322-z
- Wall H.S. Analytic Theory of Continued Fractions. Van Nostrand, New York, 1948.