References

  1. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Math. 2023, 11 (21), 4487. doi:10.3390/math11214487
  2. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Math. 2021, 9 (2), 148. doi:10.3390/math9020148
  3. Antonova T., Dmytryshyn R., Kurka R. Approximation for the ratios of the confluent hypergeometric function \(\Phi_D^{(N)}\) by the branched continued fractions. Axioms 2022, 11 (9), 426. doi:10.3390/axioms11090426
  4. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a, b; c, d; z_1, z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  5. Antonova T., Dmytryshyn R., Sharyn S. Generalized hypergeometric function \({}_3F_2\) ratios and branched continued fraction expansions. Axioms 2021, 10 (4), 310. doi:10.3390/axioms10040310.
  6. Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6\). Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
  7. Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s functions \(F_D\) ratio by Nörlund’s branched continued fraction in the complex domain. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
  8. Antonova T.M., Sus’ O.M. Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions. J. Math. Sci. 2018, 228 (1), 1–10. doi:10.1007/s10958-017-3601-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2015, 58 (4), 7–14. (in Ukrainian))
  9. Antonova T.M., Sus’ O.M, Vozna S.M. Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions. Ukrainian Math. J. 2022, 74 (4), 501–518. doi:10.1007/s11253-022-02079-1 (translation of Ukrain. Mat. Zh. 2022, 74 (4), 443–457. doi:10.37863/umzh.v74i4.7031 (in Ukrainian))
  10. Baran O.E. Approximation of functions of multiple variables branched continued fractions with independent variables. Cand. Phys.-Math. Sc. (Ph.D. ) Thesis in Math. Anal. Pidstryhach IAPMM NASU, Lviv, 2014. (in Ukrainian)
  11. Bodnarchuk P.I., Skorobohatko V.Ya. Branched Continued Fractions and Their Applications. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
  12. Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  13. Bodnar D.I. Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions. J. Math. Sci. 1993, , 1155–1158. doi:10.1007/BF01098839 (translation of Mat. Metody Fiz.-Mekh. Polya 1990, 32, 40–44. (in Russian))
  14. Bodnar D.I., Manzii O.S. Expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction and its limit behavior. J. Math. Sci. 2001, 107, 3550–3554. doi:10.1023/A:1011977720316 (translation of Mat. Metody Fiz.-Mekh. Polya 1998, 41 (4), 12–16. (in Ukrainian))
  15. Bodnar D.I. Multidimensional C-factions. J. Math. Sci. 1998, 90, 2352–2359. doi:10.1007/BF02433965 (translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 39–46. (in Ukrainian))
  16. Bodnar D.I. Multidimensional generalizations of continued fraction. Mat. Metody Fiz.-Mekh. Polya 2003, 46 (3), 32–39. (in Ukrainian)
  17. Cuyt A.A.M., Petersen V., Verdonk B., Waadeland H., Jones W.B. Handbook of Continued Fractions for Special Functions. Springer, Dordrecht, 2008.
  18. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
  19. Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Sym. 2024, 16 (02), 220. doi:10.3390/sym16020220.
  20. Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\). Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
  21. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  22. Dmytryshyn R.I., Sharyn S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
  23. Dmytryshyn R.I. Some Classes of Functional Branched Continued Fractions with Independent Variables and Multiple Power Series. Dr. Phys.-Math. Sc. Thesis in Math. Anal. Vasyl Stefanyk PNU, Ivano-Frankivsk, 2018. (In Ukrainian)
  24. Dmytryshyn R.I. The multidimensional generalization of g-fractions and their application. J. Comput. Appl. Math. 2004, 164–165, 265–284. doi:10.1016/S0377-0427(03)00642-3
  25. Hladun V.R., Hoyenko N.P., Manzij O.S., Ventyk L.S. On convergence of function \(F_4(1, 2; 2, 2; z_1, z_2)\) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9 (3), 767–778. doi:10.23939/mmc2022.03.767
  26. Hoyenko N., Antonova T., Rakintsev S. Approximation for ratios of Lauricella-Saran fuctions \(F_S\) with real parameters by a branched continued fractions. Math. Bul. Shevchenko Sci. Soc. 2011, 8, 28–42. (In Ukrainian)
  27. Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of the Norlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian)
  28. Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
  29. Kaliuzhnyi-Verbovetskyi D., Pivovarchik V. Recovering the shape of a quantum caterpillar tree by two spectra. Mech. Math. Methods 2023, 5, 14–24. doi:10.31650/2618-0650-2023-5-1-14-24
  30. Kaminsky A.A., Selivanov M.F. On the application of branched operator continued fractions for a boundary problem of linear viscoelasticity. Int. Appl. Mech. 2006, 42, 115–126. doi:10.1007/s10778-006-0066-3
  31. Kuchminska Kh.Yo. Corresponding and associated branched continued fractions for double power series. Dop. AN UkrSSR. Ser. A. 1978, 7, 614–618. (in Ukrainian)
  32. Kuchminska Kh.Yo. On the Sleszynsky-Pringsheim Theorem for the three-dimensional generalization of continued fractions. J. Math. Sci. 2022, 265 (3), 408–422. doi:10.1007/s10958-022-06061-x (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 60–71. (in Ukrainian))
  33. Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach IAPMM NASU, Lviv, 2010. (in Ukrainian)
  34. Kuchminska Kh.Yo., Vozna S.M. Developent of an \(N\)-multiple power series into \(N\)-dimensional regular \(C\)-fraction. J. Math. Sci. 2020, 246 (2), 201–208. doi:10.1007/s10958-020-04730-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 70–75. (in Ukrainian))
  35. Komatsu T. Asymmetric circular graph with Hosoya index and negative continued fractions. Carpathian Math. Publ. 2021, 13 (3), 608–618. doi:10.15330/cmp.13.3.608-618
  36. Lorentzen L., Waadeland H. Continued Fractions with Applications. Noth Holland, Amsterdam, 1992.
  37. Manzii O.S. Investigation of expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction. Approx. Theor. and its Appl.: Pr. Inst. Math. NAS Ukr. 2000, 31, 344–353. (in Ukrainian)
  38. Murphy J., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fractions. J. Comp. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050x(78)90002-5
  39. O’Donohoe M.R. Application of Continued Fractions in One and More Variables. Ph.D. Thesis. Brunel University, London, 1974.
  40. Siemaszko W. Branched continued fractions for double power series. J. Comp. Appl. Math. 1980, 6 (2), 121–125. doi:10.1016/0771-050x(80)90005-4
  41. Skorobohatko V.Ya. Theory of Branched Continued Fractions and Its Applications in Computational Mathematics. Nauka, Moscow, 1983. (In Russian)
  42. Wang R., Qian, J. On branched continued fractions rational interpolation over pyramid-typed grids. Numer. Algor. 2010, 54, 47–72. doi:10.1007/s11075-009-9322-z
  43. Wall H.S. Analytic Theory of Continued Fractions. Van Nostrand, New York, 1948.