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On structure of branched continued fractions

Antonova T.M.

The paper provides a survey of various multidimensional generalizations of continued fractions
that arose when solving the problem of approximating functions of one or several variables, includ-
ing some hypergeometric functions. It is shown that all these generalizations can be considered as
separate cases of the general concept of a branched continued fraction, the definition of which is
given in the work.

Key words and phrases: branched continued fraction, holomorphic function, approximation by
rational functions.
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Introduction

It is well known that continued fractions have effective applications in the theory of
approximation of functions of one variable [17, 28,36, 43]. V.Ya. Skorobohatko proposed the
problem of constructing a multidimensional generalization of the continued fraction, which
would play the same role in function theory of several variables as multiple power series.

In 1966, the first work on an infinite branched continued fraction (BCF) of the general form
was published, although there were partial cases earlier (for more details we refer the reader
to the review paper [16]). BCF is written as follows

N
v+ Y o (1)
) N e ’
1= . 11,12
011 + Z v+
=170 T
n 2,

i=1 Vit inip T

where v, u; , Ui, ..., Uiy, i, Vi, i, - - - are so-called elements of the fraction (they may be num-
bers, functions, matrices, operators, etc.). V.Ya. Skorobohatko approached the concept of BCF
as an expression of the form (1), considering a tree graph of the most general form (see [41]),
since the geometric representation of a continued fraction is an oriented tree graph. By anal-
ogy with the definition of a continued fraction [43], PI. Bodnarchuk proposed the definition of
BCF based on combinations of multidimensional fractional-linear mappings [11]. D.I. Bodnar
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later proposed to consider BCF (1) as a sequence of its approximants (see [16])
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Today, BCFs are used not only to approximate functions of one or several variables [1-3, 5,22,
25], but also in various problems of applied mathematics, chemistry, mathematical physics,
and engineering [29,30,35].

One of the approaches to representing analytic functions in the form of continued fractions
is the construction of continued fractions corresponding to given formal power series [17,28].
Another approach used to represent hypergeometric functions by continued fractions is the
method of constructing continued fractions based on recurrence relations of hypergeometric
series [28,43]. Both approaches are used in the analytical theory of BCFs. But unlike the one-
dimensional case, the problem of constructing BCF (1) corresponding to given formal multiple
power series is solved ambiguously. Moreover, the recurrence relations of hypergeometric se-
ries also does not always lead to the construction of (1). Solving these and related problems led
to the emergence BCFs with various branches [1,10, 23,33, 39,40]. In addition, many different
sequences of approximants appeared (see [8,9]). As a result, in each specific case, a system of
notation, a sequence of approximants for a certain BCF is often suggested.

This paper proposes an approach to the definition of BCF based on its structure. All known
BCF structures are described.

1 Definition of BCF

Let r be a natural number and G = {1,2,...,N}. For each k > 0 and i,((p) €G,1<p<r,
let I]Er) = (ilgl),ilgz), .. .,i,((r)) be a multiple index. Next, let G(Io(r)) be a subset of G", where
G'=0GxGx...xG.Foreachr >2,k>1and1 < p <k, let

r
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be a set of multiple multiindices.
A branched continued fraction is called an expression of the form
7
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where YJI((],), uI( 0 ’(’)I(r), e, u

1) 1)
matrices, operators, etc.).

Note thatif r = 1, then Iél) = iy € G and for given ip and for each k > 1, I((;)) can be written
as follows

7007 V() - - ATE called elements (they may be numbers, functions,
(k) (k)

I(%) =i(k) = (ig,i1,...,i), k>1,

and

TV = Jo={i(k) : i, € Gi(p—1)), Gli(p—1)) CG, 1<p<k k>1}, i(0) =iy,
be a set of simple multiindex.

Thus, (2) can be written as
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2 Structures of BCF
We begin our description of BCF structures with a general BCF.

21 BCF with N branching branches
This is a BCF of the form (see [12])

al i)
0; —+ . (4)
’ i1X::1 N Uj2)

i) = 701‘(2) o
Herer=1,G={1,2,...,N},G(i(k—1)) = G fork > 1,i(0) = ip, and
Jo={ik): 1<i, <N, 1<p<k k>1}.
Such BCFs arose, in particular, when constructing of BCF expansions for ratios of Appell’s
hypergeometric functions F; [27], F3 [37], F4 [15], Horn’s H3 [2], Lauricella-Saran’s Fs [26],

Lauricella’s FE()N) [7], and its confluent form QD(DN) [3]. BCFs of the form (4) were also obtained
during the construction of algorithms for expansion of formal multiple power series into a
multidimensional C-fraction [15] and a multidimensional g-fraction [24].

Sometimes it is convenient to write BCF as follows
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for instance, the BCF expansions of Horn’s confluent hypergeometric function Hg ratios have
the form (see [6])
3—[(ip—1)/2]
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where [ - | denotes an integer part. It is clear that
G=1{1,23}, Gli(k—1))=1{2—[(ix1—1)/2],3—[(ir_1 —1)/2]}, k>1, i(0) =i
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2.2 BCF with different number of branching branches

A BCEF structure
z Ui1)
a i Ui(2)
1+
=11 4 —2)

was obtained for Appell’s hypergeometric functions F, in [13] and F3 in [14], which can be
rewritten as
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where, fork > 1,

G=G(i(2k—-2)) ={1,2}, G(i(2k—1)) ={ik-1}, Wik—1) = Uik), Wi(2k) = Vi(k)-

For the Appel’s hypergeometric function Fy, the following BCF was considered (see [25])
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where

G = G(i(0)) = G(i(2K) = {1,2}, G(i(2k—1)) = {B—in1}, k>1
In works [10,18,21,23], a BCF of the structure
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was considered, that is
G(i(0)) =G ={1,2,...,N}, G(i(k)) ={1,2,...,i}, k=>1.

For the ratios of Lauricella-Saran’s hypergeometric function Fx with certain values of pa-
rameters the following BCFs
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and
Uj(1)23
1—2z+ 0;(2)23 (7)
=z 1;(3)23
1—zp+ 22

-

were constructed (see [1]).
In works [1,19], these BCFs are considered as a confluent BCF of the form (5) with N = 3.
Indeed, for (6) we have G = {1,2,3}, G(i(0)) = {1,3},

o, if iy =1,
{2 3}, if i1 =3,

. if i2k = 2,
{1 3}, if iy =3,

G(i(2k — 1)) = {

with k > 1, and for (7) we have G = {1,2,3}, G(i ={2,3},
iy =2,
G(i(2k — 1)) = Bkt
{1 3}, if ix-1=3,
B if iy =1,
{2 3}, if iy =3,
with k > 1.
BCF of the form i
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was studied in [31,33,38,39,42]. It is easy to show that (8) can be written in the form (3), where
g = G(i(0)) ={1,2,3},

{1}/ if ik—l =1,
Glk—1)= {2}, ifig1=2
{(1,2,3}, if ixq =3,

for k > 2, and

cro, if i1=1,k>1,
o, if i1 =2, k>1,
Uiy = < cp i k=3, k>1,
Chp if ip=3ip1=11<p<k—1k>2
(o if iy =3, ip1=21<p<k-1k>2
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There are few works devoted to BCF of type (8) with N branching branches (see [32,34,39]).
In particular, when N = 3 one has
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fori > 0 and k > 0. For this BCF one has G = G(i(O)) ={1,2,3,4,5,6,7},and

{1}, if =1,
{2}, if i1 =2,
{3}, if ix_1 =3,
G(i(k—1)) = ¢ {1,2,4}, if i, 1=4, k>2.
{1,3,5}, if ix_1 =5,
{2,3,6}, if ix_1 =26,
{1,2,3,4,5,6,7}, if iy_1 =7,
One more BCF with two branching branches
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can be found in [40].
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For this BCF we have G = G(i(0)) = {1,2,3},

{1,3}, if j_1=1,
G(i(k—1)) =< {2,3}, if ix.1=2 k>2

{3}, if 1=3,
and
(deo,  if ix=1,k>1,
dok, if =2, k>1,
der,  if i1 =3,k>1,
digp, U ip=11p,41=31<p<k-1k>2
dippr if ip=2,ipy1=3,1<p<k-1k>2

\

2.3 BCF with multiple multiindex and different number of branching branches

Finally, we consider two BCFs, which arose during the construction of expansion for ratios
of hypergeometric functions 3F; (see [5]) and Hy (see [4,20]), that is
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je=ik+0; , 1<ig<2-6 , k>1,

respectively.
Here and subsequently, 5Z denotes the Kronecker delta.

Thus, for both (9) and (10) we have r =2, G = {1; 2}, 10(2) = (iél),iéz)), 10(2) € G2 and
2 2 2 (1) (2 (1) (2
70 = (12, 1) = (0,2, 0 ), k> 1
Furthermore, for (9) we obtain (ij)o € {(1,1);(1,2);(2,1);(2,2)} and
2 2 . . L , .
G(ZRF ) = (T - 148, | ik <21 < <2, fig—jil # likr = jeal, k= 1},
and for (10) we have (ij)o € {(1,1);(1,2);(2,2)},

2 2 . . .
G(I((k)_l)) = {I((k)) P 1< <2-8 ,jk=ik+0; ,k>1}
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Conclusions

This paper proposes an approach to definiting the concept of a branched continued fraction
based on its structure. This approach is a development of Skorobohatko’s idea of representing
continued fractions and their multidimensional generalizations in the form of tree graphs. It
is shown that BCFs that arise in various problems can be interpreted as separate cases of the
proposed concept. In all cases considered here, the number of branching branches is finite,
however our approach can be generalized to an infinite (countable) set of branching branches.

The future direction of the research consists in the construction and description of the
methodology for the study of sequences of BCF approximants.
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Y cTaTTi HaBeAEHO OTASIA Pi3HNMX 6araTOBMMIpHMX y3araabHeHb HellepepBHMX ApObiB, ski BU-
HUKAM IIpM pO3B’SI3yBaHHI 3apadi HAOAVDKeHHs (PYHKIIN OAHi€l UM 6araTbOX 3MiHHMX, BKAIOUHO 3
AeSIKMMU TimepreoMeTpyaanMy pyHKIisMuy. ITokaszaHo, 10 Bei Oi y3araabHEHHST MOXKHA PO3TASI-
AATH SIK OKpeMi BUIIaAKM 3araAbHOTO IOHSITTS TFiAASICTOTO AQHIIOTOBOTO APOGY, O3HAUEHHS SIKOTO
HaBeAEHO Y poboTi.

Kontouosi croea i ¢ppasu: TIAASICTVIE AQHITIOTOBMIA APi6, ToroMOpdpHa PYHKIIST, HaOAVDKeHHS pa-
LiOHAABHVMY (PYHKITISIMIAL



