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On structure of branched continued fractions

Antonova T.M.

The paper provides a survey of various multidimensional generalizations of continued fractions

that arose when solving the problem of approximating functions of one or several variables, includ-

ing some hypergeometric functions. It is shown that all these generalizations can be considered as

separate cases of the general concept of a branched continued fraction, the definition of which is

given in the work.
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Introduction

It is well known that continued fractions have effective applications in the theory of

approximation of functions of one variable [17, 28, 36, 43]. V.Ya. Skorobohatko proposed the

problem of constructing a multidimensional generalization of the continued fraction, which

would play the same role in function theory of several variables as multiple power series.

In 1966, the first work on an infinite branched continued fraction (BCF) of the general form

was published, although there were partial cases earlier (for more details we refer the reader

to the review paper [16]). BCF is written as follows
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where v0, ui1 , vi1 , . . . , ui1,...,ik
, vi1,...,ik

, . . . are so-called elements of the fraction (they may be num-

bers, functions, matrices, operators, etc.). V.Ya. Skorobohatko approached the concept of BCF

as an expression of the form (1), considering a tree graph of the most general form (see [41]),

since the geometric representation of a continued fraction is an oriented tree graph. By anal-

ogy with the definition of a continued fraction [43], P.I. Bodnarchuk proposed the definition of

BCF based on combinations of multidimensional fractional-linear mappings [11]. D.I. Bodnar
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later proposed to consider BCF (1) as a sequence of its approximants (see [16])
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Today, BCFs are used not only to approximate functions of one or several variables [1–3, 5, 22,

25], but also in various problems of applied mathematics, chemistry, mathematical physics,

and engineering [29, 30, 35].

One of the approaches to representing analytic functions in the form of continued fractions

is the construction of continued fractions corresponding to given formal power series [17, 28].

Another approach used to represent hypergeometric functions by continued fractions is the

method of constructing continued fractions based on recurrence relations of hypergeometric

series [28, 43]. Both approaches are used in the analytical theory of BCFs. But unlike the one-

dimensional case, the problem of constructing BCF (1) corresponding to given formal multiple

power series is solved ambiguously. Moreover, the recurrence relations of hypergeometric se-

ries also does not always lead to the construction of (1). Solving these and related problems led

to the emergence BCFs with various branches [1, 10, 23, 33, 39, 40]. In addition, many different

sequences of approximants appeared (see [8, 9]). As a result, in each specific case, a system of

notation, a sequence of approximants for a certain BCF is often suggested.

This paper proposes an approach to the definition of BCF based on its structure. All known

BCF structures are described.

1 Definition of BCF
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be a set of multiple multiindices.

A branched continued fraction is called an expression of the form
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where v
I
(r)
0

, u
I
(r)
(1)

, v
I
(r)
(1)

, . . . , u
I
(r)
(k)

, v
I
(r)
(k)

,. . . are called elements (they may be numbers, functions,

matrices, operators, etc.).

Note that if r = 1, then I
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Thus, (2) can be written as
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2 Structures of BCF

We begin our description of BCF structures with a general BCF.

2.1 BCF with N branching branches

This is a BCF of the form (see [12])
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Here r = 1, G = {1, 2, . . . , N}, G(i(k − 1)) = G for k ≥ 1, i(0) = i0, and

J0 =
{

i(k) : 1 ≤ ip ≤ N, 1 ≤ p ≤ k, k ≥ 1
}

.

Such BCFs arose, in particular, when constructing of BCF expansions for ratios of Appell’s

hypergeometric functions F1 [27], F3 [37], F4 [15], Horn’s H3 [2], Lauricella-Saran’s FS [26],

Lauricella’s F
(N)
D [7], and its confluent form Φ

(N)
D [3]. BCFs of the form (4) were also obtained

during the construction of algorithms for expansion of formal multiple power series into a

multidimensional C-fraction [15] and a multidimensional g-fraction [24].

Sometimes it is convenient to write BCF as follows
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for instance, the BCF expansions of Horn’s confluent hypergeometric function H6 ratios have

the form (see [6])
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where [ · ] denotes an integer part. It is clear that

G = {1, 2, 3}, G(i(k − 1)) = {2 − [(ik−1 − 1)/2], 3 − [(ik−1 − 1)/2]}, k ≥ 1, i(0) = i0.
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2.2 BCF with different number of branching branches

A BCF structure
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was obtained for Appell’s hypergeometric functions F2 in [13] and F3 in [14], which can be

rewritten as
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where, for k ≥ 1,

G = G(i(2k − 2)) = {1, 2}, G(i(2k − 1)) = {i2k−1}, wi(2k−1) = ui(k), wi(2k) = vi(k).

For the Appel’s hypergeometric function F4, the following BCF was considered (see [25])
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where

G = G(i(0)) = G(i(2k)) = {1, 2}, G(i(2k − 1)) = {3 − i2k−1}, k ≥ 1.

In works [10, 18, 21, 23], a BCF of the structure
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was considered, that is

G(i(0)) = G = {1, 2, . . . , N}, G(i(k)) = {1, 2, . . . , ik}, k ≥ 1.

For the ratios of Lauricella-Saran’s hypergeometric function FK with certain values of pa-

rameters the following BCFs
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and
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were constructed (see [1]).

In works [1, 19], these BCFs are considered as a confluent BCF of the form (5) with N = 3.
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was studied in [31,33,38,39,42]. It is easy to show that (8) can be written in the form (3), where
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cp,k, if ip = 3, ip+1 = 2, 1 ≤ p ≤ k − 1, k ≥ 2.
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There are few works devoted to BCF of type (8) with N branching branches (see [32,34,39]).

In particular, when N = 3 one has
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for i ≥ 0 and k ≥ 0. For this BCF one has G = G(i(0)) = {1, 2, 3, 4, 5, 6, 7}, and

G(i(k − 1)) =







{1}, if ik−1 = 1,

{2}, if ik−1 = 2,

{3}, if ik−1 = 3,

{1, 2, 4}, if ik−1 = 4,

{1, 3, 5}, if ik−1 = 5,
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{1, 2, 3, 4, 5, 6, 7}, if ik−1 = 7,

k ≥ 2.

One more BCF with two branching branches
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can be found in [40].
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For this BCF we have G = G(i(0)) = {1, 2, 3},

G(i(k − 1)) =







{1, 3}, if ik−1 = 1,

{2, 3}, if ik−1 = 2,

{3}, if ik−1 = 3,

k ≥ 2,
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dk−p,k, if ip = 2, ip+1 = 3, 1 ≤ p ≤ k − 1, k ≥ 2.

2.3 BCF with multiple multiindex and different number of branching branches

Finally, we consider two BCFs, which arose during the construction of expansion for ratios

of hypergeometric functions 3F2 (see [5]) and H4 (see [4, 20]), that is
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Conclusions

This paper proposes an approach to definiting the concept of a branched continued fraction

based on its structure. This approach is a development of Skorobohatko’s idea of representing

continued fractions and their multidimensional generalizations in the form of tree graphs. It

is shown that BCFs that arise in various problems can be interpreted as separate cases of the

proposed concept. In all cases considered here, the number of branching branches is finite,

however our approach can be generalized to an infinite (countable) set of branching branches.

The future direction of the research consists in the construction and description of the

methodology for the study of sequences of BCF approximants.
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У статтi наведено огляд рiзних багатовимiрних узагальнень неперервних дробiв, якi ви-

никли при розв’язуваннi задачi наближення функцiй однiєї чи багатьох змiнних, включно з

деякими гiпергеометричними функцiями. Показано, що всi цi узагальнення можна розгля-

дати як окремi випадки загального поняття гiллястого ланцюгового дробу, означення якого

наведено у роботi.

Ключовi слова i фрази: гiллястий ланцюговий дрiб, голоморфна функцiя, наближення ра-

цiональними функцiями.


