References

  1. Alyusof R., Wani S.A. Certain properties and applications of \(\Delta_h\) hybrid special polynomials associated with Appell sequences. Fractal Fract. 2023, 7 (3), 233. doi:10.3390/fractalfract7030233.
  2. Bell E.T. Exponential polynomials. Ann. Math. 1934, 35 (3), 258–277. doi:10.2307/1968431
  3. Boas R.P., Buck R.C. Polynomial expansions of analytic functions. Springer-Verlag, Berlin & Heidelberg, 1964.
  4. Carlitz L. Some remarks on the Bell numbers. Fibonacci Quart. 1980, 18 (1), 66–73.
  5. Cesarano G., Dattoli S., Lorenzutta C. Finite sums and generalized forms of Bernoulli polynomials. Rend. Mat. 1999, 19, 385–391.
  6. Cesarano C., Ramírez W. Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Carpathian Math. Publ. 2022, 14 (2), 354–363. doi:10.15330/cmp.14.2.354-363.
  7. Comtet L. Advanced combinatorics: the art of finite and infinite expansions. Reidel, Dordrecht & Boston, 1974.
  8. Dattoli G. Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle. In: Proc. of the Workshop “Advanced Special functions and applications”, Melfi (PZ), Italy, May 9–12, 1999. Aracne, Roma, 2000, 147–164.
  9. Duran U., Araci S., Acikgoz M. Bell-based Bernoulli polynomials with applications. Axioms 2021, 10 (1), 29. doi:10.3390/axioms10010029
  10. Quintana Y., Ramírez W., Urieles A. On an operational matrix method based on generalized Bernoulli polynomials of level \(m\). Calcolo 2018, 55 (3), article number 30. doi:10.1007/s10092-018-0272-5
  11. Rainville E.D. Special functions. Macmillan Company, New York, 1960.
  12. Ramírez W., Junaid N., Arundhati W., Javid G.D., Zahoor A.R. Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations. J. Math. Comput. Sci. 2024, 35 (1), 96–108. doi:10.22436/jmcs.035.01.07
  13. Ramírez W., Cesarano C., Díaz S. New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. WSEAS Trans. Math., 2022, 21, 604–608. doi:10.37394/23206.2022.21.69
  14. Ramírez W., Urieles A., Herrera R., Ortega M.J. New family of Bernoulli-type polynomials and some application. Dolomites Res. Notes Approx., 2023, 16 (1), 20–30.
  15. Steffensen J.F. The poweriod, an extension of the mathematical notion of power. Acta. Math. 1941, 73, 333–366. doi:10.1007/BF02392231
  16. Szegő G. Orthogonal polynomials. American Math. Soc., Providence, Rhode Island, 1939.
  17. Wang W., Wang T. Identities on Bell polynomials and Sheffer sequences. Discret. Math. 2009, 309 (6), 1637–1648. doi:10.1016/j.disc.2008.02.036
  18. Wani S.A., Abuasbeh K., Oros G.I., Trabelsi S. Studies on special polynomials involving degenerate Appell polynomials and fractional derivative. Symmetry, 2023, 15 (4), 840. doi:10.3390/sym15040840
  19. Wani S.A. Two-iterated degenerate Appell polynomials: properties and applications. Arab J. Basic Appl. Sci. 2024, 31 (1), 83–92. doi:10.1080/25765299.2024.2302502
  20. Zayed M., Wani S.A. A study on generalized degenerate form of 2D Appell polynomials via fractional operators. Fractal Fract. 2023, 7 (10), 723. doi:10.3390/fractalfract7100723