References
- Alyusof R., Wani S.A. Certain properties and applications of \(\Delta_h\) hybrid special polynomials associated with Appell sequences. Fractal Fract. 2023, 7 (3), 233. doi:10.3390/fractalfract7030233.
- Bell E.T. Exponential polynomials. Ann. Math. 1934, 35 (3), 258–277. doi:10.2307/1968431
- Boas R.P., Buck R.C. Polynomial expansions of analytic functions. Springer-Verlag, Berlin & Heidelberg, 1964.
- Carlitz L. Some remarks on the Bell numbers. Fibonacci Quart. 1980, 18 (1), 66–73.
- Cesarano G., Dattoli S., Lorenzutta C. Finite sums and generalized forms of Bernoulli polynomials. Rend. Mat. 1999, 19, 385–391.
- Cesarano C., Ramírez W. Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Carpathian Math. Publ. 2022, 14 (2), 354–363. doi:10.15330/cmp.14.2.354-363.
- Comtet L. Advanced combinatorics: the art of finite and infinite expansions. Reidel, Dordrecht & Boston, 1974.
- Dattoli G. Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle. In: Proc. of the Workshop “Advanced Special functions and applications”, Melfi (PZ), Italy, May 9–12, 1999. Aracne, Roma, 2000, 147–164.
- Duran U., Araci S., Acikgoz M. Bell-based Bernoulli polynomials with applications. Axioms 2021, 10 (1), 29. doi:10.3390/axioms10010029
- Quintana Y., Ramírez W., Urieles A. On an operational matrix method based on generalized Bernoulli polynomials of level \(m\). Calcolo 2018, 55 (3), article number 30. doi:10.1007/s10092-018-0272-5
- Rainville E.D. Special functions. Macmillan Company, New York, 1960.
- Ramírez W., Junaid N., Arundhati W., Javid G.D., Zahoor A.R. Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations. J. Math. Comput. Sci. 2024, 35 (1), 96–108. doi:10.22436/jmcs.035.01.07
- Ramírez W., Cesarano C., Díaz S. New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. WSEAS Trans. Math., 2022, 21, 604–608. doi:10.37394/23206.2022.21.69
- Ramírez W., Urieles A., Herrera R., Ortega M.J. New family of Bernoulli-type polynomials and some application. Dolomites Res. Notes Approx., 2023, 16 (1), 20–30.
- Steffensen J.F. The poweriod, an extension of the mathematical notion of power. Acta. Math. 1941, 73, 333–366. doi:10.1007/BF02392231
- Szegő G. Orthogonal polynomials. American Math. Soc., Providence, Rhode Island, 1939.
- Wang W., Wang T. Identities on Bell polynomials and Sheffer sequences. Discret. Math. 2009, 309 (6), 1637–1648. doi:10.1016/j.disc.2008.02.036
- Wani S.A., Abuasbeh K., Oros G.I., Trabelsi S. Studies on special polynomials involving degenerate Appell polynomials and fractional derivative. Symmetry, 2023, 15 (4), 840. doi:10.3390/sym15040840
- Wani S.A. Two-iterated degenerate Appell polynomials: properties and applications. Arab J. Basic Appl. Sci. 2024, 31 (1), 83–92. doi:10.1080/25765299.2024.2302502
- Zayed M., Wani S.A. A study on generalized degenerate form of 2D Appell polynomials via fractional operators. Fractal Fract. 2023, 7 (10), 723. doi:10.3390/fractalfract7100723