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About properties and the monomiality principle of Bell-based
Apostol-Bernoulli-type polynomials

Ramirez W.12, Cesarano C.>®, Wani S.A.3, Yousuf S.%, Bedoya D.5

This article investigates the properties and monomiality principle within Bell-based Apostol-
Bernoulli-type polynomials. Beginning with the establishment of a generating function, the study
proceeds to derive explicit expressions for these polynomials, providing insight into their structural
characteristics. Summation formulae are then derived, facilitating efficient computation and ma-
nipulation. Implicit formulae are also examined, revealing underlying patterns and relationships.
Through the lens of the monomiality principle, connections between various polynomial aspects are
elucidated, uncovering hidden symmetries and algebraic properties. Moreover, connection formu-
lae are derived, enabling seamless transitions between different polynomial representations. This
analysis contributes to a comprehensive understanding of Bell-based Apostol-Bernoulli-type poly-
nomials, offering valuable insights into their mathematical nature and applications.

Key words and phrases: special polynomial, monomiality principle, operational connection, sym-
metric identity, summation formula.
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1 Introduction and preliminaries

Special polynomials are distinguished by their unique properties or particular importance
across diverse mathematical domains. Well-recognized examples encompass families like Leg-
endre, Chebyshev, Hermite, Bell, and Touchard polynomials. These polynomial classes fre-
quently emerge in mathematical physics, engineering, computer science, and various scientific
tields. Special polynomials of two variables hold significant importance across mathematical
disciplines due to their versatile applications and unique properties. These polynomials, often
expressed as functions of two variables, play crucial roles in fields such as algebraic geometry,
combinatorics, and mathematical physics. They serve as fundamental tools for representing
complex surfaces, solving systems of equations, and studying intricate mathematical struc-
tures. Examples include bivariate orthogonal polynomials like Jacobi, Hermite, and Legen-
dre polynomials, which find applications in approximation theory, numerical analysis, and
probability theory. Moreover, special families of bivariate polynomials, such as Schur poly-
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nomials and symmetric functions, are central in algebraic combinatorics and representation
theory, offering insights into symmetric functions, partition theory, and symmetric group rep-
resentations. Through their rich mathematical properties and diverse applications, special
polynomials of two variables continue to contribute significantly to advancing theoretical un-
derstanding and practical problem-solving in various mathematical contexts, as evidenced in
references such as [1-3,6,12,13,17-20].

One of the significant classes of two variables, special polynomials, are Bell polynomials.
The Bell polynomials are a powerful mathematical tool for describing and analysing combina-
torial structures and algebraic relationships. Named after the renowned mathematician Eric
Temple Bell, these polynomials play a fundamental role in various areas of mathematics, in-
cluding combinatorics, number theory, and mathematical physics. Originating from the study
of exponential generating functions, Bell polynomials provide a systematic way to express
and manipulate certain polynomial sequences, making them invaluable in theoretical and ap-
plied contexts. With their ability to encode combinatorial information and generate efficient
algorithms for solving combinatorial problems, Bell polynomials have found wide-ranging
applications in fields such as probability theory, statistical mechanics, and computer science.
In this introduction, we will explore Bell polynomials” key properties and applications, shed-
ding light on their significance in mathematical research and problem-solving. The generating
function of these polynomials in two variables (see, [9]) is represented as

o0 S
Z B, (w,(ﬂ); _ ewt—O—cD(ef_l). (1)
s=0 ’

Substituting w = 0, gives Bs(0; @) = Bs(®@), which is known as classical Bell polynomials
(or exponential polynomials) and is given by following generating function (see, [2-5]), which
is defined as follows

Y Bo(@)L = eoe-D), @

s!

If we take @ = 1 in (2) we obtain Bs(1) = Bs, known as Bell numbers (see, [2-5])
i B.E o),
= s

Fors € INg and x, B > —1, the sth Jacobi polynomial PS(K’ﬁ ) (w) may be defined by means of
Rodrigues’ formula (see, [11,16])
(_1)5 dS
2ss! dew*
The connection between the sth monomial w® and the sth Jacobi polynomial PS(K’ﬁ ) (w) may be
written as follows (see, [11, equation (2), p. 262])

s e s+ r L+x+B42k) _(xp)
w _s!];‘)<s_k>(—1) (1+K—|-,3—|-k)s+1pk (1—2w). (3)

Fors € Np and w € C, the Stirling numbers of second kind S(s, k) are defined by means of
the following expansion (see, [7, Theorem B, p. 207])

W' = i (‘Z) kIS(s, k), (4)

k=0
so that S(s, k) =0if1 <s < k. Weput S(0,0) =1and S(0,k) = 0 fork > 1.

PP (w) = (1 - w) ™ (1+w) P {Q1-w) ™1 +w)™}, weC\{-11}.
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Proposition 1. Form € N, let {BL’”‘” (w)}s>0 be the sequence of generalized Bernoulli poly-
nomials of level m. Then, the following identities are satisfied (see, [10, equation (4)])

s v (s k! [m—1]
w® = kg%) <k> WBS"‘ (w). (5)

The paper enhances our understanding of Bell-based Apostol-Bernoulli-type polynomials,
providing valuable insights into their mathematical structure and properties. In Section 2, the
study establishes the domain of Bell-based Apostol-Bernoulli-type polynomials and derives
connection formulae to facilitate transitions between different representations and formula-
tions of these polynomials. Additionally, explicit forms of these polynomials are derived, of-
fering a clear expression of their structure and characteristics. Section 3 scrutinizes implicit
formulae, revealing underlying patterns and relationships that contribute to a deeper under-
standing of their properties. In Section 4, the paper rigorously analyzes and explores the
monomiality principle for these polynomials. Finally, the paper concludes with a summary
in the conclusion section.

2 Bell-based Apostol-Bernoulli-type polynomials

In this section, we explore the generating function of Bell-based Apostol-Bernoulli-type
polynomials of order « and investigate their various relationships, including correlation for-
mulae, implicit summation formulae, and partial derivative formulae.

Definition 1. For any « € C and s € Ny, the Bell-based Apostol-Bernoulli-type polynomial of
order « is defined as

S

23%5 )(w @; )\)

2
< ! 2>“e“’t+@(et’1), t| < |logA|l, 1%:=1. (6)
5=0

2Met

Substituting w = 0 and @ = 1 in (6), let us define a Bell-based Apostol-Bernoulli-type
number of order «, as follows
12

(@) -1
Lo 0105 = () ¢

Remark 1. If we choose &« = 0 in (6), we have to reduce Bell-based Apostol-Bernoulli-type
polynomials of order a into bivariate Bell polynomials defined in (1) as follows

o

i chA) _wt+a>ef Z wwt

Remark 2. If we choose @ = 0 and A = 1 in (6), we obtain familiar generalized Bernoulli-type
polynomials R\ ( ) (see, [14])

o] t2 IX(,‘} oo N ts
Y 5 (w,0; 1) ‘ <2€t 2) et = YR )(w)a.

s=0 s=0

Remark 3. If we choose @ = 0, A =1, and a = 1 in (6) the Bell-based Apostol-Bernoulli-type
polynomials R (w, @; A) reduces to usual Bernoulli-type polynomials Rs(w) (see, [14])

t2

[e¢] ts
2 (w,0; 1 e =Y Ry(w)—
ZB ! <2et ) S; s(




382 Ramirez W., Cesarano C., Wani S.A., Yousuf S., Bedoya D.

Remark 4. If we choose A = 1, then (6) reduces to Bell-based Bernoulli-type polynomials of

o tS t2
E)ngg )(w @; 1) . <2€t 2) wt+we -1) Z 9‘{

order «
S

Below we show particular examples of these polynomials.
Example 1. For« = 1 and A = 3 we have the following polynomials:
R0 (w0,0;3) =0, RV (w,@;3) =0, R (w,@;3) =6,

(wW+@)P?-3w+3 @
4 2’

R (w, @;3) = 30w + 300 — 45, R\ (w, @;3) =
Example 2. For « = 2 and A = 2 we have the following polynomials:
R (w,@;2) = P (0, @;2) = R (w,@;2) = %P (0, @;2) = 0,
R (w,0;2) =6, R (w,@;2) = 30w + 30 — 120.
Theorem 1. Fora € C and s € Ny, the following relation
(@) = (5) g@
R (w, @A) = ) k Ry (w; A)Bs_ (@) 7)
k=0
holds, where R,((’x) (w; ) are referred to as generalized Apostol-Bernoulli-type polynomials.

Proof. By using the relation (6), we have

S

¥ @@’ = ( B ) earro

2Met —2
= ( & )“ewfe@@ RS R,((’x)(w')\)ﬁ Y By(@).
2Met —2 = k! =, s!
Applying the series rearrangement, we obtain

> & (s ts

Z Bmglx) (wr @, )\>—' = Z Z <k> RIEIX) (w; )\)Bs,k(&?)—'.

s=0 5 s=0k=0 5

After simplification by using series rearrangement, we obtain the result (7). O

Theorem 2. For any « € C and s € Ny, the following relation holds true

(s
R (w,@0) = ) (k)Bm§“><A>Bsk<w,w>. ®)
k=0
Proof. By using result (6), we obtain
o («) tz t wottalel—1)
LR (@ A) = (o) e
t2 ; (,D tk 0 tS
_ (,4} 6 —
_<2Aet—2) ZR k'ZBsww)

k>0

After simplification by using series rearrangement, we obtain the result (8). O
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Theorem 3. Forany s € INg and « € C, the Bell-based Apostol-Bernoulli-type polynomials of
order v satisfies the relation

S

R (w,@;4) = 1 @Bm,g”‘)(w;;\)wsk. )

k=0

Proof. Using the relation (6), we get

gBiﬁg )(w @; )\) <Aeft—1> pwtt@(e'=1) _ < t2 )“e@(etl)e“’t

tk 00 (wt)s 00 N WS ts+k
=L @Ay L5 = LD e @) o

k>0
After, applying series rearrangement, we obtain
5 4 ( Yy sk
R ; A w A)w” ™" —.
Lem = L3 ({) it
After simplification by using series rearrangement, we obtain the result (9). O

Theorem 4. For any « € C and s € INy, the following relation holds true

S

R (0 +@,z0) = ) (D 7Y (w; 1) By (@, 2). (10)
k=0

Proof. By using the result (6), we get

S

> 2
ZBiﬁg )(w+a) zZ; )\) . < t 2) plwF@)t+z(e'-1)

= 2Met —
£ t ot +z(e!~1)
:<2)\ef—2> W@tz = S;)R wAk'ZB (@,2)—
After simplification by using series rearrangement, we obtain the result (10). O

From the identity (3) and Proposition 1, we can derive several intriguing algebraic relations
that link the polynomials B%ga) (w, @; A) with other polynomial families, including Jacobi poly-
nomials, generalized Bernoulli polynomials of level m, and Genocchi polynomials.

Theorem 5. For « € C, the Bell-based Apostol-Bernoulli-type polynomials of order «, are
related with the Jacobi polynomials PS(K”s ) (w), by means of the following identity

») JHEY 0n@) o aye oy LHEHBH2)  wp) g (1)
_ZZ <]><]_k>giﬁs]-(w,}\)(s Mo B b 2
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Proof. By substituting (3) into the right-hand side of (9), we have the following result.

s (w, @; M)
_ EO ]) B3 (@) — )1 k_zi ( - ﬁk) (1) (ﬁ e p Z)fkjﬂ PP (12
L (oo (i ] )
B () () et g o
= k;;{(—l)f C) <§+ ’;) pR (@ 1) (s — ))! (1(i’£i;i;ffjﬂp,§"'ﬁ>(1 —2w).
Consequently, we obtain identity (11). O

Theorem 6. For a € C, the Bell-based Apostol-Bernoulli-type polynomials of order «, are re-

lated to the generalized Bernoulli polynomials of level m Bim_l] (w), by means of the following
identity

R (w, @; ) 2 2 ( ) ( ) R (@; A)%B}Zl](w). (12)

k=0j=k

Proof. By substituting (5) into the right-hand side of (9), we get the following result

@ v (5 @ = (5K e
BNRs (w,w,A)_x<j>B%j (w,A)Z( L >(k+m)!Bs_j_lk(w)

J=0 k=0
s s—j _ \
= (a) 5—7] k! (m—1]
- ];)k_o (]) 8% (@:A) < k ) (k +m)! Bsfjfk(w)
- k=0 j=0 j k)P "k m)! sk
N kz%)z;( <J> <k> B9 A)mBj—k (w).
—0j=
Consequently, we obtain identity (12). -

Theorem 7. For a € C, the Bell-based Apostol-Bernoulli-type polynomials of order « are re-
lated to the Stirling numbers of the second kind, using the following identity

S

R (w0, 1) = ¥ (,i)Bm,E“)(w; Ny (‘,f)m(s — K.

k=0 k=0

Proof. After replacing (4) in the right-hand side of (9), we can proceed by applying the proof
provided in Theorem 5, with appropriate adaptations. O
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3 Implicit summation formulae

This section discusses useful identities such as the implicit summation formula for

the

Bell-based Apostol-Bernoulli-type polynomials of order a«, which is defined in the following

theorems.

Theorem 8. For arbitrary s € INg and a1, ap € IN the following relation holds true
(a1-+a2) = (5 ) (22)
BRs (w1 + wy, @1+ @A) =) i) B (w1, @1; A)BR, % (w2, @25 A).
k=0
Proof. From the relation (6) we get

#5 t2alew1t+w1(e’fl) t2azew2t+w2(ef71)

" or(a+02) @1+ @A )— =
S;)B s @+ @A) G = o o —o)m

k oo S

t
=) B%,((M)(whwvft)— ) BmngZ)(wz,CDz;)\)—,
k>0 " 5=0 st

_ o (aq) A (ap) . t5+k
_ZZBmk (w1, @1;A)gRs 2 (wa, @z; )

slk!”

() o] S
) Bm§“1+“2)(wl +wy, @1+ @A) = Yo ) <k
s=0 §* s=0k=0

»
N—
[os]
».:Rr\
2
—

(D
<

)
<.

N
SN—
[os]

:/::Bf\
=

=

—

g
g

)

N
N

N

S—
| =5

Now, equating both sides, we obtained the result (13).

Theorem 9. For any arbitrary « € IN and s € INy, the following relation holds true

R (w0 +1,0;4) — R (w,00) = Y <
k=0

s+1
) )Bm}f‘)(w, @;\).

Proof. Using the relation (6), we get

o) aF v @ nE
Y BR (w4 1,a>,;\)a — ) BRs (w,w,}\);
s=0 : s=0 :
pup(wtt+o(e=1)  2a,wtt+o(e!~1)
T 2af—2)C  (2xef—2)®
tZocewtha?(eLl)(et -1

(2hef —2)®

) - Y P w,on)h 3
kZOB kA S (s 1)

Applying the series rearrangement technique implies the desired result (14)

Theorem 10. For any arbitrary « € IN and s, 7 € INy, the following relation holds true

() “ (s\(T ntm_ (@)
BR, 1y (w, @;A) = Z (p—w) Bi)%sﬂfjfk(w, @; \).

n,m=0 n m

(13)

(14)

(15)
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Proof. Replacing t by t 4 7 in expression (6), it follows that

Substituting the first part of the exponential term from the right hand side to the left hand side
in the preceding expression, we have

o~ w(tn) i oA (0, @A) (t+n)°  (t+p)™ )

= st (2Aettn —2)a ’

which, in view of well well-known series manipulation formula

3 t+17) 3 By
Z 2 = Z 2(5"‘1’)5?,

M=0 s,r=0

becomes

oy (t+n)* b
w(t+1) @(e 1)
E_ SH (w,@; ) S AT _2)lxe : (16)

Replacing w by p in the previous expression (16), it follows that

B 00 N #s t 4 20 ey
pli+) Z Bﬁ‘igﬁr(p, )‘)5121 N (2)(»et+1717)_ 2)"‘6@( o a”

s,r=0
Comparing expressions (16) and (17), we find
.

nr
t+}7 Z merr w, (D A) 7"'
s,r=0 .

pl+) Z 9%err P, @; )\) 1

ll
s,r=0 r

Substituting the first part of the exponential term from the right hand side to the left hand side
in the preceding expression, we have

(p w H_U Z s*‘)%err p,(D,)\) Z Z msqtr p,(D,A) 17

5,r=0 : s,r=0 strl’
Thus, the preceding expression can further be simplified as

(e 9] Tl 7 S

t
Z (p_w)ner Z s")%SJH’ p,(D,A) Z mser p,(D,)\)

l l
n,m=0 n.m. s,r=0 1’. s,r=0

r

m

shrl’

Using series rearrangement in the left hand side of the previous expression and comparing the
like exponents of t and # on both sides, assertion (15) is established. O

4 Monomiality principle

The concept of monomiality traces back to 1941, with J.E. Steffenson introducing the powe-
roid notion [15], later refined by G. Dattoli [8]. The operators M and D serve as both mul-
tiplicative and derivative operators for a polynomial set {b;(u) }sen, satisfying the following
expressions

bss1(u) = M{bs(u)} (18)
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and
s bs—1(u) = D{bs(u)}. (19)

The set {bs(u)}sen manipulated by these operators is termed a quasi-monomial and must
adhere to the formula

A

[D,M] =DM - MD =1,
displaying a Weyl group structure. The properties of M and D determine the characteristics
of the quasi-monomial set {bs(u) }senN:

(i) bs(u) satisfies the differential equation
MD{bs(u)} = s bs(u), (20)
if M and D have differential realizations;
(ii) the explicit form of bs(u) is given by
bs(u) = M° {1}, (21)
with bp(u) = 1;
(iii) the generating relation in exponential form for bs(u) can be expressed as

~ o tS
¢} = Y b(u)=, |t < oo,
s=0

s!’
using identity (21).

The primary objective of the monomiality principle is to identify operators for multiplica-
tion and differentiation. Additionally, in the context of the monomiality principle, we estab-
lish the following outcomes to characterize the Bell-based Apostol-Bernoulli-type polynomials
R (w0, @; A).

Theorem 11. Forx € C and s € IN, the following multiplicative and derivative operators

. 2Ae% —2
Bmgft)l(w/ @A) =M ) = w+@e% + a(2Ae% — 2) <267

i aw
” . 2)e ) 22)

and

R (@0,@0) =D ) = du, (23)

respectively, hold true.

Proof. Taking the derivatives of the relation (6) with respect to t on both sides, we have
ter tS

E .

_ b wtte(e-1)| _ - () .
at[(met—z)we ] at[gg)Bms (w, @;A)

The preceding expression can further be simplified as

s—1

et — 2 p20 pwt+@(e'~1) o0 ¢
t t _ t _ (a) .
w ~+ @e" + w(21e' —2) <2 2\e )} oA =2 55-:05 BRs (w, @; A) o
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Inserting the left hand side of expression (6) in the left hand side of previous expression, it
follows that

S

— ZAet)} i Bi}iglx)(w, cD;)\)%

s=0

2X et —2

w + @e' + a(2Ae! — 2) (2

24
Vs @ (o) o
_ZSB S (w/w/ ) S! .
Further, differentiating expression (6) with respect to w, it follows that
2. 2 ) eerraen] _ 2 )" eertote-n
“l\20et —2 2et —2 '
Inserting left part of expression (6), it follows the identity expression
= or(®) _ ok
aw[sgo R (w, @; \) } tz R (w, ‘D’)‘)H' (25)

Further replacing s with s 4- 1 in the right hand side of expression (24), we find

S

—2Aet>] i R (w, @; A)t.

= Z (s+1) Bmsjl(w,wm)

2M et — 2

[w + we' + a(2Ae' —2) <2

ts
(s+1)s!

Therefore, in view of (18) and identity expression (25) in the resultant equation, the asser-
tion (22) is proved.
The expression (25) can further be written as

@ R @, ET
aw Z BSRS (w,(D,A)E —Z BSRS (w,(D,A) 5

s=0 s=0

On substituting s with s — 1 in the right hand side of above equation, we find

> " > ts
e [ Y R (w,@; A)—'] = ¥ s (w,@;0) -
= n! = (s —1)!
Thus, in view of expression (19), the assertion (23) follows. O

Next, we find the differential equation satisfied by these polynomials.

Theorem 12. The Bell-based Apostol-Bernoulli-type polynomials of order « Bmg”‘) (w,@; A)
satisfy the succeeding differential equation

2% — 2

w 9y + cDeaw Ow + 0((2)\66“’ — 2) (2
dw

- ZAeBW)aw - s} sRY (w,@;0) = 0. (26)

Proof. Inserting expression (22) and (23) in expression (20), we obtain assertion (26). O
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5 Conclusion

This article has thoroughly investigated the properties and monomiality principle inherent
in Bell-based Apostol-Bernoulli-type polynomials. Commencing with the establishment of a
generating function, the study progressed to derive explicit expressions for these polynomi-
als, shedding light on their structural characteristics. The derivation of summation formulae
further enhanced the efficiency of computation and manipulation. Additionally, the exami-
nation of implicit formulae unveiled underlying patterns and relationships, providing deeper
insights into the nature of these polynomials. Through the application of the monomiality
principle, connections between various aspects of the polynomials were elucidated, reveal-
ing hidden symmetries and algebraic properties. Furthermore, the derivation of connection
formulae facilitated seamless transitions between different polynomial representations, con-
tributing significantly to our comprehensive understanding of Bell-based Apostol-Bernoulli-
type polynomials and their mathematical applications.

Therefore, this study has made significant strides in unravelling the intricacies of Bell-based
Apostol-Bernoulli-type polynomials. By systematically exploring their properties, employing
the monomiality principle, and deriving essential formulae, this research has provided valu-
able insights into these polynomials’ mathematical nature and applications. The findings pre-
sented herein offer a foundation for further investigations into these polynomials’ theoretical
and practical aspects, potentially opening avenues for advancements in various mathematical
disciplines. Overall, this study contributes to the broader body of knowledge surrounding
polynomial theory and its applications.
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Y Wi cTaTTi AOCAIAXYIOTHCS BAACTMBOCTI Ta IPMHIIMII MOHOMiaABHOCTI IIOAITHOMIB Ty ATIocTO-
Aa-bepryAAi Ha ocHOBI beana. [TounHaroun 3 BcTaHOBAEHHS TBipHOI (OYHKIIT, AOCAIAXKEHHS IIpo-
AOBXYEThCsI A0 OTPVIMaHHSI SIBHMX BMPa3iB AAsI VX TOAIHOMIB, IO AA€ 3MOTY 3pO3yMiTH ixHi cTpy-
KTYPHi XapakTepucTVKIL. IToTiM BMBOASTBCS POPMYAM TTIACYMOBYBaHHS, IO TTOAETTITY€ edpeKTUBHI
obuncaeHHs Ta MaHimyAsIii. HessBHI dpopMyAr TakoX IepeBipsIIOThCsI, BUSIBASIOUNM 6a30Bi 3aKOHO-
MIpHOCTI Ta 3B’s13K1. Yepes mMpu3My MPUHLIMITY MOHOMIaABHOCTI 3'SICOBYIOTBCS 3B'SI3KM MiX pi3HU-
MU TIOAIHOMiaABHMMM acTleKTaMM, BiAKpVBaOUuM IPMXOBaHi CMMeTpii Ta aarebpaiuHi BAACTMBOCTI.
Kpim Toro, oTprmanHo popMyAM 3B’sI3KY, ITI0 3abe3redye HellepepBHMI IIepexia MixX pisHMMU IIpea-
CTaBA€HHSIMM TIOAiHOMIB. Llel aHaAi3 cpusie BcebiuHOMY PO3yMiHHIO ITOAIHOMIB THITy AmocToAa-
bepryAai Ha ocHOBi Beaaa, mponoHyoun LiHHY iHdpOpMallito Ipo ix MaTeMaTM4Hy IIPUPOAY Ta 3a-
CTOCYBaHHSI.

Kntouosi cnosa i ¢ppasu: creliaAbHMIA TOAIHOM, IPVHIMIT MOHOMiaABHOCTI, OIlepalIilfHyIi1 3B S130K,
CMeTpMYHA TOTOXHICTh, pOpMyAa ITiACYy MOBYBaHHSI.



