References

  1. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
  2. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021, 9 (2), 148. doi:10.3390/math9020148
  3. Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of some ratios of Horn’s hypergeometric functions \(\mathrm{H}_7\) by continued fractions. Axioms 2023, 12 (8), 738. doi:10.3390/axioms12080738
  4. Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(\mathrm{H}_6\). Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
  5. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a,b;c,d;z_1,z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  6. Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  7. Bodnar D., Bilanyk I. Convergence criterion for branched continued fractions of the special form with positive elements. Carpathian Math. Publ. 2017, 9 (1), 13–21. doi:10.15330/cmp.9.1.13-21
  8. Bodnar D., Hladun V. Sufficient conditions of stability of branched continued fractions with positive elements. Mat. Metody Fiz.-Mekh. Polya 2002, 45 (1), 22–27. (in Ukrainian)
  9. Cotan P., Teseleanu G. Continued fractions applied to a family of RSA-like cryptosystems. In: Su C., Gritzalis D., Piuri V. (Eds.) Proc. of the Intern. Conf. “Information Security Practice and Experience”, Taipei, Taiwan, November 23–25, 2022, Lect. Notes Comput. Sci. 2022, 13620, Springer, Cham, 2022,–605. doi:10.1007/978-3-031-21280-2_33
  10. Cuyt A., Petersen V.B., Verdonk B., Waadeland H., Jones W.B. Handbook of Continued Fractions for Special Functions. Springer, Berlin, 2008.
  11. Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry 2024, 16 (2), 220. doi:10.3390/sym16020220
  12. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  13. Dmytryshyn R.I., Sharyn S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
  14. Hladun V. Some sets of relative stability under perturbations of branched continued fractions with complex elements and a variable number of branches. J. Math. Sci. 2016, 215 (1), 11–25. doi:10.1007/s10958-016-2818-x (translation of Mat. Metody Fiz.-Mekh. Polya 2014, 57 (2), 14–24. (in Ukrainian))
  15. Hladun V., Bodnar D. Some domains of relative stability under perturbations of branched continued fractions with complex elements. Bukovinian Math. J. 2018, 288, 18–27. (in Ukrainian)
  16. Hladun V., Hoyenko N., Manziy O., Ventyk L. On convergence of function \(F_4(1,2;2,2;z_1,z_2)\) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9 (3), 767–778. doi:10.23939/mmc2022.03.767
  17. Hoyenko N., Hladun V., Manzij O. On the infinite remains of the norlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25
  18. Jin J., Tian J., Yu M., Wu Y., Tang Y. A novel ultra-short-term wind speed prediction method based on dynamic adaptive continued fraction. Chaos Solitons Fractals 2024, 180, 114532. doi:10.1016/j.chaos.2024.114532
  19. Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
  20. Kane A.M. On the use of continued fractions for electronic cash. Int. J. Comput. Sci. Secur. 2010, 4 (1), 136–148.
  21. Kane A.M. On the use of continued fractions for mutual authentication. Int. J. Inf. Secur. Sci. 2012, 1 (3), 88–99.
  22. Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach Institute for Appl. Probl. in Mech. and Math., NAS of Ukraine, Lviv, 2010. (in Ukrainian)
  23. Lorentzen L., Waadeland H. Continued Fractions with Applications. North-Holland, Amsterdam, London, New-York, Tokyo, 1992.
  24. Lorentzen L., Waadeland H. Continued Fractions. Vol. 1: Convergence Theory. Atlantis Press/World Scientific, Paris, Amsterdam, 2008.
  25. Manziy O., Hladun V. Ventyk L. The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions. Math. Model. Comput. 2017, 4 (1), 48–58. doi:10.23939/mmc2017.01.048
  26. Moscato P., Ciezak A., Noman N. Dynamic depth for better generalization in continued fraction regression. In: Proc. of the Genetic and Evolutionary Computation Conference, Lisbon, Portugal, July 15–19, 2023, Association for Computing Machinery, New York, 2023, 520–528. doi:10.1145/3583131.3590461
  27. Moscato P., Haque M.N., Huang K., Sloan J., Corrales de Oliveira J. Learning to extrapolate using continued fractions: Predicting the critical temperature of superconductor materials. Algorithms 2023, 16 (8), 382. doi:10.3390/a16080382
  28. Moscato P., Haque M.N., Moscato A. Continued fractions and the Thomson problem. Sci. Rep. 2023, 13 (1), 7272. doi:10.1038/s41598-023-33744-5
  29. Moscato P., Sun H., Haque M.N. Analytic continued fractions for regression: A memetic algorithm approach. Expert Syst Appl. 2021, 179, 115018. doi:10.1016/j.eswa.2021.115018
  30. Pillai J.S., Padma T. The snalysis of PQ sequences generated from continued fractions for use as pseudorandom sequences in cryptographic applications. In: Dash S., Bhaskar M., Panigrahi B., Das S. (Eds.) Proc. of the Intern. Conf. “Artificial Intelligence and Evolutionary Computations in Engineering Systems”, Chennai, India, April 22–23, 2015, Advances in Intelligent Systems and Computing, 394, Springer, New Delhi, 2016, 633–644. doi:10.1007/978-81-322-2656-7_58
  31. Puri I., Dhurandhar A., Pedapati T., Shanmugam K., Wei D., Varshney K.R. CoFrNets: interpretable neural architecture inspired by continued fractions. In: Ranzato M., Beygelzimer A., Dauphin Y., Liang P.S.,Wortman V.J. (Eds.) Proc. of the Conf. “Neural Information Processing Systems”, December 6–12, 2020, Online, Neural Information Processing Systems Foundation, Inc., 2021, 21668–21680.
  32. Sauer T. Continued Fractions and Signal Processing. Springer, Cham, 2021.
  33. Wall H.S. Analytic Theory of Continued Fractions. D. Van Nostrand Co., Inc, New-York, 1948.