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Reduction of invertible matrices by two-sided transformations
from Zelisko groups to a simpler form

Romaniv A.M., Shchedryk V.P.

Zelisko group originated in the study of invertible matrices that reduce a matrix to the Smith

form. In the calculations related to finding the Smith form of matrix product, their greatest com-

mon divisor and least common multiple, the problem of reducing an invertible matrices by two-

sided transformations from Zelisko groups to a simpler form arises. In the article, exactly such a

form was obtained. We also establish the relationship between the stable range of a ring and the

representation of invertible matrices as a product of three factors, two of which belong to Zelisko

groups.
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1 Introduction

By default, we denote by Mn(R), GLn(R) the ring and the complete linear group of n × n

matrices over a ring R, respectively.

Let R be a commutative ring without zero divisors (commutative domain) over which each

matrix D admits diagonal reduction, i.e. there exist invertible matrices PD and QD of appro-

priate sizes, such that

PDDQD = diag (δ1, . . . , δn) =: ∆, where δi|δi+1, i = 1, . . . , n − 1.

Due to I. Kaplanskii [5], R is called an elementary divisor domain. The matrix ∆ is called the

Smith form, and PD, QD are left and right transforming matrices for the matrix D. A matrix PD is

ambiguously defined: each matrix from the coset G∆PD is again the left transforming matrix

for the matrix D, where G∆ is the multiplicative group (Zelisko group) defined as follows

G∆ = {K ∈ GLn(R) : ∃ K1 ∈ GLn(R) such that K∆ = ∆K1} ,

see [2, 3, 12]. If det ∆ 6= 0, the group G∆ consist of all invertible matrices of the form
∥
∥
∥
∥
∥
∥
∥
∥
∥

h11 h12 . . . h1.n−1 h1n
δ2
δ1

h21 h22 . . . h2.n−1 h2n

. . . . . . . . . . . . . . .
δn
δ1

hn1
δn
δ2

hn2 . . . δn
δn−1

hn.n−1 hnn

∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1)
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The situation is similar with the right transforming matrices for the matrix D: each matrix

from coset QDGT
∆

is again the right transforming matrix for the matrix D, where GT
∆

is the

group obtained from G∆ by transposing of its elements.

It should be noted that the Zelisko group G∆ has played an important role in solving the

problem of separating a regular factor from a polynomial matrix over a field, which was one

of the urgent problems of the middle of the last century [6].

The determinant of the matrix has the multiplicative property: determinant of the product

of two matrices is equal to the product of the factors determinants. Smith form, generally

speaking, does not have this property. Indeed,

A := diag (1, 2), B := diag (2, 1)

have the Smith form diag (1, 2), however, their product AB = diag (2, 2), which is simulta-

neously the Smith form of the product of these matrices, does not coincide with the product

of their Smith forms, namely the matrix diag (1, 4). However, under certain conditions, Smith

form has the multiplicative property. The following result sheds light on the nature of the

multiplicative of the Smith form.

Theorem 1 ([10]). Let R be an elementary divisor domain and

A = P−1
A EQ−1

A , B = P−1
B ΦQ−1

B ∈ Mn(R),

where E, Φ are Smith forms of this matrices. The Smith form of the matrix AB is equal to EΦ

if and only if Q−1
A P−1

B = LH, where L ∈ GT
E , H ∈ GΦ.

As follows from the above example, not every invertible matrix can be represented as a

product of matrices from GT
E and GΦ. In this regard, the question arises: what is the simpler

form of invertible matrix with respect to left transformations from GT
E and right from GΦ. If R

is an elementary divisor domain of stable range 1.5 (see definition below) the Theorem 5 gives

the answer to this question.

The study of the Smith form of the greatest common divisor (g.c.d.) and the least common

multiple (l.c.m.) of matrices requires establishing the condition under which the invertible

matrix is the product of elements from GΦ and GE. Theorem 4 shows a simpler form of such

matrix with respect to the left transformations from GΦ and to the right from GE.

2 Auxiliary statements

Throughout this article, unless specifically stated, R will denote a commutative elementary

divisor domain. By S(i) we denote i × i submatrix of a matrix S =
∥
∥sij

∥
∥ ∈ Mn(R) of the form

S(i) :=

∥
∥
∥
∥
∥
∥
∥
∥
∥

sn−i+1.1 sn−i+1.2 . . . sn−i+1.i

sn−i+2.1 sn−i+2.2 . . . sn−i+2.i

. . . . . . . . . . . .

sn1 sn2 . . . sni

∥
∥
∥
∥
∥
∥
∥
∥
∥

, i = 1, . . . , n − 1.

By d-matrix we will denote a diagonal matrix, in which each previous diagonal element di-

vides its next one; (a, b) denotes g.c.d. of a and b, |A| denotes determinant of A.
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Lemma 1. Let Φ := diag (ϕ1, . . . , ϕn) be nonsingular d-matrix over R and S ∈ GLn(R). If

H ∈ GΦ, then
(

ϕi+1

ϕi
,
∣
∣
∣S(i)

∣
∣
∣

)

=

(
ϕi+1

ϕi
,
∣
∣
∣(SH)(i)

∣
∣
∣

)

, i = 1, . . . , n − 1.

Proof. The first i columns of H have the form (see (1))

Hi :=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

h11 h12 . . . h1.i−1 h1i
ϕ2
ϕ1

h21 h22 . . . h2.i−1 h2i

. . . . . . . . . . . . . . .
ϕi
ϕ1

hi1
ϕi
ϕ2

hi2 . . .
ϕi

ϕi−1
hi.i−1 hii

ϕi+1
ϕ1

hi+1.1
ϕi+1
ϕ2

hi+1.2 . . .
ϕi+1
ϕi−1

hi+1.i−1
ϕi+1

ϕi
hi+1.i

. . . . . . . . . . . . . . .
ϕn

ϕ1
hn1

ϕn

ϕ2
hn2 . . .

ϕn

ϕi−1
hn.i−1

ϕn

ϕi
hni

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=:

∥
∥
∥
∥

Ki

K′
i

∥
∥
∥
∥

.

All elements of K′
i are divided onto

ϕi+1
ϕi

. It follows that all i × i submatrices of Hi, with excep-

tion of Ki, contain at least one row, all elements of which are divided onto
ϕi+1

ϕi
. Therefore, all

minors determinant of order i of Hi, with exception of |Ki|, are divided onto
ϕi+1

ϕi
. The matrix

Hi is invertible. Consequently, g.c.d. of all minors determinant of order i of this matrix are

equal to 1. Hence
(

|Ki| ,
ϕi+1

ϕi

)

= 1. (2)

The last i rows of S have the form
∥
∥
∥ S(i) S′

(i)

∥
∥
∥. Then

(SH)(i) =
∥
∥
∥ S(i) S′

(i)

∥
∥
∥ ·

∥
∥
∥
∥

Ki

K′
i

∥
∥
∥
∥

.

Using the Binet-Cauchy formula, we get

∣
∣
∣(SH)(i)

∣
∣
∣ =

∣
∣
∣S(i)

∣
∣
∣ |Ki|+ di,

where di is sum of all minors determinant of order i of
∥
∥
∥ S(i) S′

(i)

∥
∥
∥, except minor |S(i)|, by

the corresponding minors of

∥
∥
∥
∥

Ki

K′
i

∥
∥
∥
∥

. Taking into account that di =
ϕi+1

ϕi
d′i, d′i ∈ R, we have

∣
∣
∣SH(i)

∣
∣
∣ =

ϕi+1

ϕi
d′i +

∣
∣
∣S(i)

∣
∣
∣ |Ki| .

Considering (2), we have

(
ϕi+1

ϕi
,
∣
∣
∣(SH)(i)

∣
∣
∣

)

=

(
ϕi+1

ϕi
,

ϕi+1

ϕi
d′i +

∣
∣
∣S(i)

∣
∣
∣ |Ki|

)

=

(
ϕi+1

ϕi
,
∣
∣
∣S(i)

∣
∣
∣ |Ki|

)

=

(
ϕi+1

ϕi
,
∣
∣
∣S(i)

∣
∣
∣

)

.
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Theorem 2. Let S ∈ GLn(R) and Φ := diag (ϕ1, . . . , ϕn) be a nonsingular d-matrix. The group

GΦ contains a matrix H such that

SH =

∥
∥
∥
∥
∥
∥
∥
∥
∥

t11 t12 . . . t1.n−1 1

t21 t22 . . . 1 0

. . . . . . . . . . . . . . .

1 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

(3)

if and only if
(

ϕi+1

ϕi
,
∣
∣
∣S(i)

∣
∣
∣

)

= 1, i = 1, . . . , n − 1. (4)

Proof. Necessity. Let H ∈ GΦ, moreover SH =: T is a matrix of the form (3). Based on the

Lemma 1,
(

ϕi+1

ϕi
,
∣
∣
∣S(i)

∣
∣
∣

)

=

(
ϕi+1

ϕi
,
∣
∣
∣T(i)

∣
∣
∣

)

, i = 1, . . . , n − 1.

Since
∣
∣T(i)

∣
∣ = ±1, i = 1, . . . , n − 1, equations (4) are fulfilled.

Sufficiency. Let S :=
∥
∥sij

∥
∥ ∈ GL2(R). Since

(
ϕ2

ϕ1
, s21

)

= 1 and (s22, s21) = 1,

we have (
ϕ2

ϕ1
s22, s21

)

= 1.

The ring R is commutative finitely generated principal ideal domain (Bézout domain). It

follows that there are u, v, such that

s22
ϕ2

ϕ1
v + s21u = 1.

Therefore,

K :=

∥
∥
∥
∥
∥

u −s22
ϕ2
ϕ1

v s21

∥
∥
∥
∥
∥

is an element of GΦ. So

SK =

∥
∥
∥
∥

∗ d

1 0

∥
∥
∥
∥

.

The martrix SK is invertible. Consequently, d is an invertible element of R. Therefore,

Kdiag
(
1, d−1

)
will be the desired one. Thus, the theorem statement is correct for second

order matrices.

Assume the correctness of this statement for all matrices of order less than n and consider

a matrix S :=
∥
∥sij

∥
∥ ∈ GLn(R). It follows from (4) that

(
ϕi+1

ϕi
, (sn1, sn2, . . . , sni)

)

= 1, i = 1, . . . , n − 1. (5)
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Consider the row ∥
∥
∥ sn1

ϕ2
ϕ1

sn2
ϕ3
ϕ1

sn3 . . .
ϕn

ϕ1
snn

∥
∥
∥ .

Step by step, using (5), we get
(

sn1,
ϕ2

ϕ1
sn2,

ϕ3

ϕ1
sn3, . . . ,

ϕn

ϕ1
snn

)

=

(

sn1,
ϕ2

ϕ1

(

sn2,
ϕ3

ϕ2
sn3, . . . ,

ϕn

ϕ2
snn

))

=

(

sn1, sn2,
ϕ3

ϕ2
sn3, . . . ,

ϕn

ϕ2
snn

)

=

(

(sn1, sn2) ,
ϕ3

ϕ2

(

sn3,
ϕ4

ϕ3
sn4, . . . ,

ϕn

ϕ3
snn

))

=

(

sn1, sn2, sn3,
ϕ4

ϕ3
sn4 . . . ,

ϕn

ϕ3
snn

)

= · · ·

= (sn1, sn2, . . . , snn) = 1.

There are un1, un2, . . . , unn ∈ R, such that

sn1u11 +
ϕ2

ϕ1
u21sn2 +

ϕ3

ϕ1
u31sn3 + . . . +

ϕn

ϕ1
un1snn = 1.

Consequently, the column
∥
∥
∥ u11

ϕ2
ϕ1

u21
ϕ3
ϕ1

u31 . . .
ϕn

ϕ1
un1

∥
∥
∥

T

is unimodular. On the basis of [5, Theorem 3.7], it can be complemented to an invertible matrix

of the form

H1 :=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

u11 u12 u13 . . . u1.n−1 u1n
ϕ2
ϕ1

u21 u22 u23 . . . u2.n−1 u2n
ϕ3
ϕ1

u31 0 u33 . . . u3.n−1 u3n

. . . . . . . . . . . . . . . . . .
ϕn−1

ϕ1
un−1.1 0 . . . 0 un−1.n−1 un−1.n

ϕn

ϕ1
un1 0 . . . 0 0 unn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

where H1 ∈ GΦ. Then

SH1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

c11 c12 . . . c1n

. . . . . . . . . . . .

cn−1.1 cn−1.2 . . . cn−1.n

1 cn2 . . . cnn

∥
∥
∥
∥
∥
∥
∥
∥
∥

=: S1

and

S1

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 −cn2 . . . −cnn

0 1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1

∥
∥
∥
∥
∥
∥
∥
∥
∥

︸ ︷︷ ︸

H2

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

c11 c′12 . . . c′1n

. . . . . . . . . . . .

cn−1.1 c′n−1.2 . . . c′n−1.n

1 0 . . . 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

=:

∥
∥
∥
∥

C11 C12

1 0

∥
∥
∥
∥

.

Since H1H2 ∈ GΦ, according to Lemma 1, we get
(

ϕi+1

ϕi
,

∣
∣
∣
∣

C11 C12

1 0

∣
∣
∣
∣
(i)

)

= 1, i = 1, . . . , n − 1.
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It follows that (
ϕi+1

ϕi
, |C12|(i)

)

= 1, i = 2, . . . , n − 1. (6)

Consider the matrix Φ1 := diag (ϕ2, ϕ3, . . . , ϕn). A matrix C12 is invertible and satisfies (6).

According to the induction assumption, the group GΦ1
contains a matrix N, such that C12N has

the form (3). Since ‖1
⊕

N‖ ∈ GΦ, the matrix H1H2‖1
⊕

N‖ will be the matrix that reduces S

to the desired form.

3 Main results

A commutative ring R is said to be of stable range 1.5 (see [9, 11]) if for each a, b ∈ R and

0 6= c ∈ R satisfying (a, b, c) = 1, there exists r ∈ R with

(a + br, c) = 1.

The notion of a ring of stable range 1.5 is modification of Bass stable range concept [1]. Com-

mutative principal ideal domains, adequate rings [4], factorial rings has stable range 1.5. Ac-

cording to [8, Theorem 2.1], commutative Bézout domains of stable range 1.5 is an elementary

divisor domains.

Denote by Ulw
n (R) the group of lower unitriangular n × n matrices over R, and by Ad

up
n (R)

the set of matrices of the form (3) over R.

Theorem 3. Let R be a commutative Bézout domain and Φ := diag (ϕ1, . . . , ϕn) be a nonsin-

gular d-matrix. The following conditions are equivalent:

1) R has stable range 1.5;

2) GL2(R) = Ulw
2 (R)Ad

up
2 (R)GΦ for all matrices Φ;

3) GLn(R) = Ulw
n (R)Ad

up
n (R)GΦ for all matrices Φ and for all n ≥ 2.

Proof. 1) ⇒ 2). Let A :=
∥
∥aij

∥
∥ ∈ GL2(R). Then

(a11, a21) = 1 =⇒

(

a11, a21,
ϕ2

ϕ1

)

= 1.

There exists r ∈ R such that (

a11r + a21,
ϕ2

ϕ1

)

= 1.

So
∥
∥
∥
∥

1 0

r 1

∥
∥
∥
∥

A =

∥
∥
∥
∥

a11 a12

a11r + a21 a12r + a22

∥
∥
∥
∥
=: A1.

The matrix A1 satisfies the conditions of Theorem 2. Therefore, there is H ∈ GΦ such that

A1H =

∥
∥
∥
∥

∗ 1

1 0

∥
∥
∥
∥

.
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Thus,

A =

∥
∥
∥
∥

1 0

−r 1

∥
∥
∥
∥

∥
∥
∥
∥

∗ 1

1 0

∥
∥
∥
∥

H−1,

i.e. GL2(R) = Ulw
2 (R)Ad

up
2 (R)GΦ.

2) ⇒ 1). Let (a, b, c) = 1, where abc 6= 0, and

a = (a, b)a1, b = (a, b)b1, (a1, b1) = 1.

There are u, v ∈ R, such that

a1u + b1v = 1.

So

A :=

∥
∥
∥
∥

a1 −v

b1 u

∥
∥
∥
∥

is invertible matrix. Consider the nonsingular d-matrix

Φ :=

∥
∥
∥
∥

1 0

0 c

∥
∥
∥
∥

.

According to the theorem assumption, A is a product of three matrices, namely A = UVH,

where U ∈ Ulw
2 (R), V ∈ Ad

up
2 (R), H ∈ GΦ. Noting that

U−1 :=

∥
∥
∥
∥

1 0

r 1

∥
∥
∥
∥

, V :=

∥
∥
∥
∥

q 1

1 0

∥
∥
∥
∥

, H−1 :=

∥
∥
∥
∥

h11 h12

ch21 h22

∥
∥
∥
∥

,

we get

V = U−1AH−1 =

∥
∥
∥
∥

∗ ∗

h11(ra1 + b1) + ch21(u − rv) ∗

∥
∥
∥
∥
=

∥
∥
∥
∥

q 1

1 0

∥
∥
∥
∥

.

Consequently,

h11(ra1 + b1) + ch21(u − rv) = 1.

It follows that (ra1 + b1, c) = 1. Since, ((a, b), c) = 1, we have

(
(a, b) (ra1 + b1) , c

)
= (ra + b, c) = 1.

The case a = 0 or b = 0 is obvious. Therefore, R has stable range 1.5.

The implication 3) ⇒ 2) is clear.

2) ⇒ 3). For second order matrices, as was just proved, our statement is correct. Let us

assume that it is correct for matrices of order less than n. Since 2) ⇔ 1) is proved, R is a Bézout

domain of stable range 1.5. Let A :=
∥
∥aij

∥
∥ ∈ GLn(R). Then

(a11, a21, . . . , an1) = 1 =⇒

(

a11, a21, . . . , an1,
ϕn

ϕ1

)

= 1.

By [8, Property 1.19], there are r1, . . . , rn−1 ∈ R such that

(

a11r1 + a21r2 + . . . + an−1.1rn−1 + an1,
ϕn

ϕ1

)

= 1.
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Consider the matrix

Un :=

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0
. . .

...

0 1 0

r1 . . . rn−1 1

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

All elements of the last row of invertible matrix AUn =:
∥
∥bij

∥
∥ satisfy the condition

(
bn1, (bn2, . . . , bnn)

)
= 1.

Since
(

bn1,
ϕn

ϕ1

)

= 1, then
(

bn1,
ϕn

ϕ1
(bn2, . . . , bnn)

)

= 1.

It follows that
(

bn1,
ϕ2

ϕ1
bn2, . . . ,

ϕn

ϕ1
bnn

)

= 1.

Similarly, to prove the sufficiency of Theorem 2, there exists Hn ∈ GΦ, such that

Un AHn =

∥
∥
∥
∥
∥
∥
∥
∥
∥

c11 c12 . . . c1n

. . . . . . . . . . . .

cn−1.1 cn−1.2 . . . cn−1.n

1 0 . . . 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

=:

∥
∥
∥
∥

C11 C12

1 0

∥
∥
∥
∥

.

Consider d-matrix Φ1 := diag (ϕ2, . . . , ϕn). Since C12 ∈ GLn−1(R), according to the assump-

tion, C12 = Un−1Vn−1Hn−1, where Un−1 ∈ Ulw
n−1(R), Vn−1 ∈ Ad

up
n−1(R), Hn−1 ∈ GΦ1

. Thus,

Un AHn =

∥
∥
∥
∥

C11 C12

1 0

∥
∥
∥
∥
=

∥
∥
∥
∥

C11 Un−1Vn−1Hn−1

1 0

∥
∥
∥
∥

=

∥
∥
∥
∥

Un−1 0

0 1

∥
∥
∥
∥

︸ ︷︷ ︸

M

∥
∥
∥
∥
∥

U−1
n−1C11 Vn−1

1 0

∥
∥
∥
∥
∥

︸ ︷︷ ︸

S

∥
∥
∥
∥

1 0

0 Hn−1

∥
∥
∥
∥

︸ ︷︷ ︸

N

= MSN.

So, A can be written in the form

A =
(

U−1
n M

)

S
(

NH−1
n

)

.

Noting that U−1
n M ∈ Ulw

n (R), S ∈ Ad
up
n (R), NH−1

n ∈ GΦ, we get

GLn(R) = Ulw
n (R)Ad

up
n (R)GΦ.

The theorem is proved.

Denote by K(α) the set of representatives of R/Rα, where α ∈ R.
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Theorem 4. Let R be a commutative Bézout domain of stable range 1.5 and

E := diag (ε1, ε2, . . . , εn) , Φ := diag (ϕ1, ϕ2, . . . , ϕn)

are nonsingular d-matrices over R and S ∈ GLn(R). There are matrices L ∈ GT
E , H ∈ GΦ, such

that

LSH =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

t11 t12 . . . t1.n−1 1

t21 t22 . . . 1 0

. . . . . . . . . . . . . . .

tn−1.1 1 . . . 0 0

1 0 . . . 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, (7)

where tij ∈ K(µij), µij :=
(

εn+1−j

ε i
,

ϕn+1−i
ϕj

)

, i, j = 1, . . . , n − 1, i + j ≤ n.

Proof. At first we consider the case of second order matrices. Since Ulw
2 (R) ⊂ GT

E , according to

the item 2) of Theorem 3, there exist matrices L1 ∈ GT
E , H1 ∈ GΦ, such that

L1SH1 =

∥
∥
∥
∥

p11 1

1 0

∥
∥
∥
∥

.

Let p11 ≡ t11 (mod µ11), where t11 ∈ K(µ11). That is, p11 − t11 = µ11r11, r11 ∈ R. Since

µ11 =
(

ε2
ε1

,
ϕ2
ϕ1

)

, there exist u, v ∈ R, such that

µ11 =
ε2

ε1
u +

ϕ2

ϕ1
v.

Hence,

p11 −
ε2

ε1
ur11 −

ϕ2

ϕ1
vr11 = t11.

So, ∥
∥
∥
∥
∥

1 − ε2
ε1

ur11

0 1

∥
∥
∥
∥
∥

∥
∥
∥
∥

p11 1

1 0

∥
∥
∥
∥

∥
∥
∥
∥
∥

1 0

− ϕ2
ϕ1

vr11 1

∥
∥
∥
∥
∥
=

∥
∥
∥
∥

t11 1

1 0

∥
∥
∥
∥

.

Assume that our statement is correct for matrices of order less than n. Since Ulw
n (R) ⊂ GT

E ,

according to the item 3) of Theorem 3, there are L1 ∈ GT
E , H1 ∈ GΦ, such that

L1SH1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

p11 p12 . . . p1.n−1 1

p21 p22 . . . 1 0

. . . . . . . . . . . . . . .

pn−1.1 1 . . . 0 0

1 0 . . . 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥

S11 1

S21 0

∥
∥
∥
∥
=: S1.

Consider d-matrices

E1 := diag (ε2, ε3, . . . , εn) , Φn := diag (ϕ1, ϕ2, . . . , ϕn−1) .

Since S21 ∈ GLn−1, according to the induction assumption, there are L2 ∈ GT
E1

, H2 ∈ GΦn ,

such that L2S21H2 has the form (7). Then

‖1 ⊕ L2‖ S1 ‖H2 ⊕ 1‖ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

g11 g12 . . . g1.n−2 g1.n−1 1

t21 t22 . . . t2.n−2 1 0

. . . . . . . . . . . . . . . . . .

tn−1.1 1 . . . 0 0 0

1 0 . . . 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=: S2,
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where tij ∈ K
(
µij

)
. Let

g1.n−1 ≡ t1.n−1(mod µ1.n−1), where t1.n−1 ∈ K(µ1.n−1), µ1.n−1 =

(
ε2

ε1
,

ϕn

ϕn−1

)

.

By analogy of the case of the second order matrices, there are l21, hn.n−1 ∈ R, such that

g1.n−1 − t1.n−1 =
ε2

ε1
l21 +

ϕn

ϕn−1
hn.n−1.

Then

L3 :=

∥
∥
∥
∥
∥

1 − ε2
ε1

l21

0 1

∥
∥
∥
∥
∥
⊕ In−2 ∈ GT

E , H3 := In−2 ⊕

∥
∥
∥
∥
∥

1 0

− ϕn

ϕn−1
hn.n−1 1

∥
∥
∥
∥
∥
∈ GΦ

and

L3S2H3 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

g′11 g′12 . . . g′1.n−2 t1.n−1 1

t21 t22 . . . t2.n−2 1 0

. . . . . . . . . . . . . . . . . .

tn−1.1 1 . . . 0 0 0

1 0 . . . 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=: S3.

Similarly, there are l31, hn.n−2 ∈ R, such that

g′1.n−2 − t1.n−2 =
ε3

ε1
l31 +

ϕn

ϕn−2
hn.n−2, t1.n−2 ∈ K(µ1.n−2), µ1.n−2 =

(
ε3

ε1
,

ϕn

ϕn−2

)

.

Then

L4 :=

∥
∥
∥
∥
∥
∥
∥

1 0 − ε3
ε1

l31

0 1 0

0 0 1

∥
∥
∥
∥
∥
∥
∥

⊕ In−3 ∈ GT
E , H4 := In−3 ⊕

∥
∥
∥
∥
∥
∥
∥

1 0 0

0 1 0

− ϕn
ϕn−2

hn.n−2 0 1

∥
∥
∥
∥
∥
∥
∥

∈ GΦ

and

L4S3H4 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

g′′11 g′′12 . . . g′′1.n−3 t1.n−2 t1.n−1 1

t21 t22 . . . t2.n−3 t2.n−2 1 0

. . . . . . . . . . . . . . . . . . . . .

tn−1.1 1 . . . 0 0 0 0

1 0 . . . 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Continuing the described process, we reduce S to the form (7). The theorem is proved.

Theorem 5. Let R be a commutative Bézout domain of stable range 1.5 and

E := diag (ε1, ε2, . . . , εn) , Φ := diag (ϕ1, ϕ2, . . . , ϕn)

are nonsingular d-matrices over R and S ∈ GLn(R).

There are H ∈ GΦ, L ∈ GE, such that

HSL =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 . . . 0 0

k21 1 . . . 0 0

. . . . . . . . . . . . . . .

kn−1.1 kn−1.2 . . . 1 0

kn1 kn2 . . . kn.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, (8)

where tij ∈ K(νij), νij =
(

ϕi
ϕj

; ε i
ε j

)

, i = 2, . . . , n, j = 1, . . . , n − 1, i > j.
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Proof. By [8, Theorem 2.14], there are matrices H1 ∈ GΦ, L1 ∈ GE, such that

H1SL1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 . . . 0 0

q21 1 . . . 0 0

. . . . . . . . . . . . . . .

qn−1.1 qn−1.2 . . . 1 0

qn1 qn2 . . . qn.n−1 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=: S1.

Reduction of the matrix S1 to the form (8) by transformations from the groups GΦ, GE is

not much differs from the methods used in the final part of the proof of the Theorem 4, and

therefore we will not quote it. The theorem is proved.

In connection with this result, we note the work of V. Petrychkovych [7] concerning two-

sided transformations of matrices over adequate rings.

Remark 1. The matrix of the form (7) is not the canonical form of S with respect to left transfor-

mations from GT
E and right from GΦ. Similarly, the matrix of the form (8) is not the canonical

form of S with respect to left transformations from GΦ and right from GE.

Example 1. Let R = Z and

Φ = E := diag (1, 8), S1 :=

∥
∥
∥
∥

6 1

1 0

∥
∥
∥
∥

, S2 :=

∥
∥
∥
∥

2 1

1 0

∥
∥
∥
∥

.

Since µ21 = (8, 8) = 8, K(8) = {0, 1, . . . , 7}, S1, S2 are matrices of the form (7). How-

ever, GT
E contains the matrix H :=

∥
∥
∥
∥

−1 8

0 1

∥
∥
∥
∥

, and GΦ the matrix L :=

∥
∥
∥
∥

1 0

0 −1

∥
∥
∥
∥

, such that

HS1L = S2.

Example 2. Let R = Z and

Φ := diag (1, 12), E := diag (1, 18), S1 :=

∥
∥
∥
∥

1 0

4 1

∥
∥
∥
∥

, S2 :=

∥
∥
∥
∥

1 0

2 1

∥
∥
∥
∥

.

Since ν21 = (12, 18) = 6, K(6) = {0, 1, . . . , 5}, S1, S2 are matrices of the form (8). However,

GΦ contains the matrix H :=

∥
∥
∥
∥

13 −2

12 · 6 −11

∥
∥
∥
∥

, and GE the matrix L :=

∥
∥
∥
∥

−7 2

−18 5

∥
∥
∥
∥

, such that

HS1L = S2.

Remark 2. It is easy to check that in the ring of lower triangular matrices over Bézout domain

the matrix of the form (8) is the canonical form with respect to left transformations from GΦ

and right from GE.
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Романiв А.М., Щедрик В.П. Зведення оборотних матриць двостороннiми перетвореннями з груп

Зелiска до простiшого вигляду // Карпатськi матем. публ. — 2024. — Т.16, №2. — C. 500–511.

Група Зелiска виникла при дослiдженнi оборотних матриць, що зводять задану матрицю

до її форми Смiта. При обчисленнях, пов’язаних зi знаходженням форми Смiта добутку ма-

триць, їх найбiльшого спiльного дiльника та найменшого спiльного кратного постає задача

зведення оборотних матриць двостороннiми перетвореннями з груп Зелiска до простiшого

вигляду. В роботi отримано власне такий вигляд. Також встановлено взаємозв’язок мiж ста-

бiльним рангом кiльця та зображенням оборотних матриць у виглядi добутку трьох спiвмно-

жникiв, два з яких належать групам Зелiска.

Ключовi слова i фрази: група Зелiска, форма Смiта, редукцiя матриць, перетворювальна

матриця.


