References

  1. Ahmadabadi M.N., Arab M., Ghaini F.M.M. The method of fundamental solutions for the inverse space-dependent heat source problem. Eng. Anal. Bound. Elem. 2009, 33 (10), 1231–1235. doi:10.1016/j.enganabound.2009.05.001
  2. Ali D., Alemdar H. Identification of the unknown diffusion coefficient in a linear parabolic equation by the semigroup approach. J. Math. Anal. Appl. 2008, 340, 5–15. doi:10.1016/j.jmaa.2007.08.004
  3. Awawdeh F., Obiedat H.M. Identification problems for degenerate parabolic equations. Appl. Math. 2013, 58 (4), 389–404.
  4. Azari H., Li C., Nie Y., Zhang S. Determination of an unknown coefficient in a parabolic inverse problem. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2004, 11 (5), 665–674.
  5. Barans’ka I., Ivanchov M. Inverse problem for a two-dimensional heat-conduction equation in a domain with free boundary. Ukr. Mat. Visn 2007, 4 (4), 457–484. (in Ukrainian)
  6. Brodyak O.Ya, Huzyk N.M. Coefficient inverse problems for parabolic equation with general weak degeneartion. Bukovinian Math. J. 2021, 9 (1), 91–106. (in Ukrainian) doi:10.31861/bmj2021.01.08
  7. Ghanmi C., Aouadi S.M., Triki F. Identification of a boundary influx condition in a one-phase Stefan problem. Appl. Anal. 2022, 101 (18), 6573–6595. doi:10.1080/00036811.2021.1934456
  8. Hazanee A., Lesnic D. Determination of a time-dependent coefficient in the bioheat eqaution. Int. J. Mech. Sci. 2014, 88, 259–266. doi:10.1016/j.ijmecsci.2014.05.017
  9. Al Horani M. Projection method for solving degenerate first-order identification problem. J. Math. Anal. Appl. 2010, 364 (1), 204–208. doi:10.1016/j.jmaa.2009.10.033
  10. Hryntsiv N. The inverse problem with free boundary for a weakly degenerate parabolic equation. J. Math. Sci. (N.Y.) 2012, 183 (6), 779–795. doi:10.1007/s10958-012-0840-1
  11. Huntul M., Lesnic D. Determination of the time-dependent convection coefficient in two-dimensional free boundary problems. Eng. Comput. 2021, 38 (10), 3694–3709. doi:10.1108/EC-10-2020-0562
  12. Huntul M.J., Lesnic D. Determination of time-dependent coefficients for a weakly degenerate heat equation. Comput. Model. Eng. & Sci. 2020, 123 (2), 475–494. doi:10.32604/cmes.2020.08791
  13. Hussein M.S., Lesnic D. Identification of the time-dependent conductivity of an inhomogeneous diffusive material. Appl. Math. Comput. 2015, 269, 35–58. doi:10.1016/j.amc.2015.07.039
  14. Hussein M., Lesnic D., Ivanchov M. Free boundary determination in nonlinear diffusion. East Asian J. Appl. Math. 2013, 3 (4), 295–310. doi:10.4208/eajam.100913.061113a
  15. Hussein M., Lesnic D., Ivanchov M., Snitko H. Multiple timedependent coefficient identification thermal problems with a free boundary. Appl. Numer. Math. 2016, 99 (C), 24–50. doi:10.1016/j.apnum.2015.09.001
  16. Huzyk N. Inverse problem of determining the coefficients in a degenerate parabolic equation. Electr. J. Diff. Equ. 2014, 2014 (172), 1–11.
  17. Huzyk N. Identification of the unknown parameters in the parabolic equation in a free boundary domain. Mat. Stud. 2019, 51, 168–182. (in Ukrainian)
  18. Huzyk N. Inverse free boundary problems for a generally degenerate parabolic equation. J. Inverse Ill-Posed Probl. 2015, 23 (2), 103–119. doi:10.1515/jiip-2011-0016
  19. Huzyk N. Coefficient Inverse Problem For The Degenerate Parabolic Equation. Differ. Equ. Appl. 2021, 13 (3), 243–255. doi:10.7153/dea-2021-13-14
  20. Huzyk N., Pukach P., Vovk M. Coefficient inverse problem for the strongly degenerate parabolic equation. Carpathian Math. Publ. 2023, 15 (1), 52–65. doi:10.15330/cmp.15.1.52-65
  21. Ivanchov M. Inverse problems for equations of parabolic type. VNTL Publishers, Lviv, 2003.
  22. Ivanchov M., Saldina N. Inverse problem for a parabolic equation with strong power degeneration. Ukrainian Math. J. 2006, 58 (1), 1685–1703. doi:10.1007/s11253-006-0162-x
  23. Johansson T.B., Lesnic D., Reeve T. A meshless method for an inverse two-phase one-dimensional nonlinear Stefan problem. Math. Comput. Simulation 2014, 101 (C), 61–77. doi:10.1016/j.matcom.2014.03.004
  24. Kinash N. An Inverse Problem for a 2D Parabolic Equation With Nonlocal Overdetermination Condition. Carpathian Math. Publ. 2016, 8 (1), 107–117. doi:10.15330/cmp.8.1.107-117
  25. Ladyzhenskaya O.A., Uralceva N.N., Solonnikov V.A. Linear and quasilinear equations of parabolic type, Moscow, Nauka, 1973. (in Russian)
  26. Li G.S., Tan Y.J., Cheng J., Wang X.Q. Determining magnitude of groundwater pollution sources by data compatibility analysis. Inverse Probl. Sci. Eng. 2006, 14 (3), 287–300. doi:10.1080/17415970500485153
  27. Jinbo L., Baiyu W., Zhenhai L. Determination of a source term in a heat equation. Int. J. Comput. Math. 2010, 87 (5), 969–975. doi:10.1080/00207160802044126
  28. Lorenzi L. An identification problem for a one-phase Stefan problem. J. Inverse Ill-Posed Probl. 2001, 9 (6), 1–27. doi:10.1515/jiip.2001.9.6.627
  29. Lopushansky A., Lopushanska H. Inverse boundary value problems for diffusion-wave equation with generalized functions in right-hand sides. Carpathian Math. Publ. 2014, 6 (1), 79–90. doi:10.15330/cmp.6.1.79-90
  30. Lesnic D., Yousefi S.A., Ivanchov M. Determination of a time-dependent diffusivity from nonlocal conditions. J. Appl. Math. Comput. 2013, 41 (1-2), 301–320. doi:10.1007/s12190-012-0606-4
  31. Nguyen D.P., Dumitru B., Tran T.P., Le D.L. Recovering the source term for parabolic equation with nonlocal integral condition. Math. Methods Appl. Sci. 2021, 44 (11), 9026–9041. doi:10.1002/mma.7331
  32. Pabyrivska N., Pabyrivskyy V. On the determination of an unknown source in the parabolic equation. Math. Model. Comput. 2017, 4 (2), 171–176. doi:10.23939/mmc2017.02.171
  33. Rao X.-B., Wang Y.-X., Qian K., Deng Z.-C., Yang L. Numerical simulation for an inverse source problem in a degenerate parabolic equation. Appl. Math. Model. 2015, 39, 7537–7553. doi:10.1016/j.apm.2015.03.016
  34. Rostamian M., Shahrezaee A. A meshless method for solving 1D time-dependent heatsource problem. Inverse Probl. Sci. Eng. 2018, 26 (1), 51–82. doi:10.1080/17415977.2017.1309396
  35. Saldina N. Inverse problem for parabolic equation with weak degeneration. Mat. Metody Fiz.-Mekh. Polya 2006, 49 (3), 7–17. (in Ukrainian)
  36. Shi C., Wang C., Wei T. Numerical solution for an inverse heat source problem by an iterative method. Appl. Math. Comput. 2014, 244 (1), 577–597. doi:10.1016/j.amc.2014.07.038
  37. Słota D. Solving the inverse Stefan design problem using genetic algorithms. Inverse Probl. Sci. Eng. 2008, 16 (7), 829–846. doi:10.1080/17415970801925170
  38. Yang L., Deng Z.-C., Yu J.-N., Luo G.-W. Optimization method for the inverse problem of reconstructing the source term in a parabolic equation. Math. Comput. Simulation 2009, 80 (2), 314–326. doi:10.1016/j.matcom.2009.06.031
  39. Yang L., Liu Y., Deng Z.-C. Multi-parameters identification problem for a degenerate parabolic equation. J. Comput. Appl. Math. 2020, 366 (1), 112422. doi:10.1016/j.cam.2019.112422