References
- Ahmadabadi M.N., Arab M., Ghaini F.M.M. The method of fundamental
solutions for the inverse space-dependent heat source problem. Eng.
Anal. Bound. Elem. 2009, 33 (10), 1231–1235. doi:10.1016/j.enganabound.2009.05.001
- Ali D., Alemdar H. Identification of the unknown diffusion
coefficient in a linear parabolic equation by the semigroup
approach. J. Math. Anal. Appl. 2008, 340, 5–15.
doi:10.1016/j.jmaa.2007.08.004
- Awawdeh F., Obiedat H.M. Identification problems for degenerate
parabolic equations. Appl. Math. 2013, 58 (4),
389–404.
- Azari H., Li C., Nie Y., Zhang S. Determination of an unknown
coefficient in a parabolic inverse problem. Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal. 2004, 11 (5),
665–674.
- Barans’ka I., Ivanchov M. Inverse problem for a two-dimensional
heat-conduction equation in a domain with free boundary. Ukr. Mat.
Visn 2007, 4 (4), 457–484. (in Ukrainian)
- Brodyak O.Ya, Huzyk N.M. Coefficient inverse problems for
parabolic equation with general weak degeneartion. Bukovinian Math.
J. 2021, 9 (1), 91–106. (in Ukrainian)
doi:10.31861/bmj2021.01.08
- Ghanmi C., Aouadi S.M., Triki F. Identification of a boundary
influx condition in a one-phase Stefan problem. Appl. Anal. 2022,
101 (18), 6573–6595.
doi:10.1080/00036811.2021.1934456
- Hazanee A., Lesnic D. Determination of a time-dependent
coefficient in the bioheat eqaution. Int. J. Mech. Sci. 2014,
88, 259–266. doi:10.1016/j.ijmecsci.2014.05.017
- Al Horani M. Projection method for solving degenerate first-order
identification problem. J. Math. Anal. Appl. 2010,
364 (1), 204–208. doi:10.1016/j.jmaa.2009.10.033
- Hryntsiv N. The inverse problem with free boundary for a weakly
degenerate parabolic equation. J. Math. Sci. (N.Y.) 2012,
183 (6), 779–795. doi:10.1007/s10958-012-0840-1
- Huntul M., Lesnic D. Determination of the time-dependent
convection coefficient in two-dimensional free boundary problems.
Eng. Comput. 2021, 38 (10), 3694–3709.
doi:10.1108/EC-10-2020-0562
- Huntul M.J., Lesnic D. Determination of time-dependent
coefficients for a weakly degenerate heat equation. Comput. Model.
Eng. & Sci. 2020, 123 (2), 475–494.
doi:10.32604/cmes.2020.08791
- Hussein M.S., Lesnic D. Identification of the time-dependent
conductivity of an inhomogeneous diffusive material. Appl. Math.
Comput. 2015, 269, 35–58.
doi:10.1016/j.amc.2015.07.039
- Hussein M., Lesnic D., Ivanchov M. Free boundary determination in
nonlinear diffusion. East Asian J. Appl. Math. 2013,
3 (4), 295–310. doi:10.4208/eajam.100913.061113a
- Hussein M., Lesnic D., Ivanchov M., Snitko H. Multiple
timedependent coefficient identification thermal problems with a free
boundary. Appl. Numer. Math. 2016, 99 (C), 24–50.
doi:10.1016/j.apnum.2015.09.001
- Huzyk N. Inverse problem of determining the coefficients in a
degenerate parabolic equation. Electr. J. Diff. Equ. 2014,
2014 (172), 1–11.
- Huzyk N. Identification of the unknown parameters in the
parabolic equation in a free boundary domain. Mat. Stud. 2019,
51, 168–182. (in Ukrainian)
- Huzyk N. Inverse free boundary problems for a generally
degenerate parabolic equation. J. Inverse Ill-Posed Probl. 2015,
23 (2), 103–119. doi:10.1515/jiip-2011-0016
- Huzyk N. Coefficient Inverse Problem For The Degenerate Parabolic
Equation. Differ. Equ. Appl. 2021, 13 (3),
243–255. doi:10.7153/dea-2021-13-14
- Huzyk N., Pukach P., Vovk M. Coefficient inverse problem for the
strongly degenerate parabolic equation. Carpathian Math. Publ.
2023, 15 (1), 52–65. doi:10.15330/cmp.15.1.52-65
- Ivanchov M. Inverse problems for equations of parabolic type. VNTL
Publishers, Lviv, 2003.
- Ivanchov M., Saldina N. Inverse problem for a parabolic equation
with strong power degeneration. Ukrainian Math. J. 2006,
58 (1), 1685–1703. doi:10.1007/s11253-006-0162-x
- Johansson T.B., Lesnic D., Reeve T. A meshless method for an
inverse two-phase one-dimensional nonlinear Stefan problem. Math.
Comput. Simulation 2014, 101 (C), 61–77.
doi:10.1016/j.matcom.2014.03.004
- Kinash N. An Inverse Problem for a 2D Parabolic Equation With
Nonlocal Overdetermination Condition. Carpathian Math. Publ. 2016,
8 (1), 107–117. doi:10.15330/cmp.8.1.107-117
- Ladyzhenskaya O.A., Uralceva N.N., Solonnikov V.A. Linear and
quasilinear equations of parabolic type, Moscow, Nauka, 1973. (in
Russian)
- Li G.S., Tan Y.J., Cheng J., Wang X.Q. Determining magnitude of
groundwater pollution sources by data compatibility analysis.
Inverse Probl. Sci. Eng. 2006, 14 (3), 287–300.
doi:10.1080/17415970500485153
- Jinbo L., Baiyu W., Zhenhai L. Determination of a source term in
a heat equation. Int. J. Comput. Math. 2010, 87
(5), 969–975. doi:10.1080/00207160802044126
- Lorenzi L. An identification problem for a one-phase Stefan
problem. J. Inverse Ill-Posed Probl. 2001, 9 (6),
1–27. doi:10.1515/jiip.2001.9.6.627
- Lopushansky A., Lopushanska H. Inverse boundary value problems
for diffusion-wave equation with generalized functions in right-hand
sides. Carpathian Math. Publ. 2014, 6 (1), 79–90.
doi:10.15330/cmp.6.1.79-90
- Lesnic D., Yousefi S.A., Ivanchov M. Determination of a
time-dependent diffusivity from nonlocal conditions. J. Appl. Math.
Comput. 2013, 41 (1-2), 301–320.
doi:10.1007/s12190-012-0606-4
- Nguyen D.P., Dumitru B., Tran T.P., Le D.L. Recovering the source
term for parabolic equation with nonlocal integral condition. Math.
Methods Appl. Sci. 2021, 44 (11), 9026–9041.
doi:10.1002/mma.7331
- Pabyrivska N., Pabyrivskyy V. On the determination of an unknown
source in the parabolic equation. Math. Model. Comput. 2017,
4 (2), 171–176. doi:10.23939/mmc2017.02.171
- Rao X.-B., Wang Y.-X., Qian K., Deng Z.-C., Yang L. Numerical
simulation for an inverse source problem in a degenerate parabolic
equation. Appl. Math. Model. 2015, 39, 7537–7553.
doi:10.1016/j.apm.2015.03.016
- Rostamian M., Shahrezaee A. A meshless method for solving 1D
time-dependent heatsource problem. Inverse Probl. Sci. Eng. 2018,
26 (1), 51–82. doi:10.1080/17415977.2017.1309396
- Saldina N. Inverse problem for parabolic equation with weak
degeneration. Mat. Metody Fiz.-Mekh. Polya 2006,
49 (3), 7–17. (in Ukrainian)
- Shi C., Wang C., Wei T. Numerical solution for an inverse heat
source problem by an iterative method. Appl. Math. Comput. 2014,
244 (1), 577–597. doi:10.1016/j.amc.2014.07.038
- Słota D. Solving the inverse Stefan design problem using genetic
algorithms. Inverse Probl. Sci. Eng. 2008, 16 (7),
829–846. doi:10.1080/17415970801925170
- Yang L., Deng Z.-C., Yu J.-N., Luo G.-W. Optimization method for
the inverse problem of reconstructing the source term in a parabolic
equation. Math. Comput. Simulation 2009, 80 (2),
314–326. doi:10.1016/j.matcom.2009.06.031
- Yang L., Liu Y., Deng Z.-C. Multi-parameters identification
problem for a degenerate parabolic equation. J. Comput. Appl. Math.
2020, 366 (1), 112422.
doi:10.1016/j.cam.2019.112422