References

  1. Kaniev S. On the deviation of functions biharmonic in a disk from their boundary values. Dokl. Akad. Nauk 1963, 153 (5), 995–998.
  2. Kharkevych Yu.I., Stepaniuk T.A. Approximate properties of Abel-Poisson integrals on classes of differentiable functions defined by moduli of continuity. Carpathian Math. Publ. 2023, 15 (1), 286–294. doi:10.15330/cmp.15.1.286-294
  3. Stepanets A.I. Methods of Approximation Theory. Part I. Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 2002. (in Russian)
  4. Stepanets A.I. Classification and approximation of periodic functions. Naukova Dumka, Kiev, 1987. (in Russian)
  5. Stepanets A.I. Uniform Approximations by Trigonometric Polynomials. Naukova Dumka, Kiev, 1981. (in Russian)
  6. Pych P. On a biharmonic function in unit disc. Ann. Polon. Math. 1975, 20 (3), 203–213. doi:10.4064/AP-20-3-203-213
  7. Kaniev S. Sharp estimate for the mean deviation of functions biharmonic in a disk from their boundary values. Dopov. Akad. Nauk Ukr. RSR 1964, 4, 451–453.
  8. Amanov T.I., Falaleev L.P. Approximation of differentiable functions by operators of the Abel-Poisson-type. Proceedings of the 5th Soviet-Czechoslovakian Meeting on Application of Methods of Theory of Functions and Functional Analysis to Problems of Mathematical Physics (Alma-Ata), 1979, 13–16. (in Russian)
  9. Falaleev L.P. Complete asymptotic expansion for an upper bound of the deviation of functions belonging to \(\textrm{Lip}_1\) from one singular integral. Imbedding Theorems and Their Applications (All-Union Mathematical Symposium), Nauka, Alma-Ata, 1976, 163–167. (in Russian)
  10. Kharkevych Y.I. On Some Asymptotic Properties of Solutions to Biharmonic Equations. Cybernet. Systems Anal. 2022, 58 (2), 251–258. doi:10.1007/s10559-022-00457-y
  11. Kharkevych Yu.I., Kal’chuk I.V. Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals. Ukrainian Math. J. 2007, 59 (8), 1224–1237. doi:10.1007/s11253-007-0082-4 (translation of Ukrain. Mat. Zh. 2007, 59 (8), 1105–1115)
  12. Zhyhallo K.M., Kharkevych Yu.I. Approximation of functions from the classes \(C^{\psi}_{\beta, \infty}\) by biharmonic Poisson integrals. Ukrainian Math. J. 2011, 63 (7), 1083–1107. doi:10.1007/s11253-011-0565-1 (translation of Ukrain. Mat. Zh. 2011, 63 (7), 939–959)
  13. Zhyhallo K.M., Kharkevych Yu.I. Approximation of \((\psi, \beta)\)-differentiable functions of low smoothness by biharmonic poisson integrals. Ukrainian Math. J. 2012, 63 (12), 1820–1844. doi:10.1007/s11253-012-0616-2 (translation of Ukrain. Mat. Zh. 2012, 63 (12), 1602–1622)
  14. Korneichuk N.P. Extremal problems in approximation theory. Nauka, Moskow, 1976. (in Russian)
  15. Kharkevych Yu.I., Stepanyuk T.A. Approximation properties of Poisson integrals for the classes \(C^{\psi}_{\beta}H^{\alpha}\). Math. Notes 2014, 96 (5–6), 1008–1019. doi:10.1134/S0001434614110406
  16. Zhyhallo T., Kharkevych Y. On Approximation of functions from the class \(L^{\psi}_{\beta, 1}\) by the Abel–Poisson integrals in the integral metric. Carpathian Math. Publ. 2022, 14 (1), 223–229. doi:10.15330/cmp.14.1.223-229