References
- Abramowitz M., Stegun I.A. Handbook of mathematical functions with
formulas, graphs and mathematical tables. U.S. Government Printing
Office, Washington, 1964.
- Antonova T.M. Speed of convergence of branched continued
fractions of the special form. Volyn Math. Bulletin 1999,
6, 3–8. (in Ukrainian)
- Antonova T.M., Bodnar D.I. Convergence regions of branched
continued fractions of the special form. In: Stepanets O.I. (Ed.)
Approximation Theory and Its Applications, Proceedings of Institute of
Mathematics of NAS of Ukraine, Institute of Mathematics of NAS of
Ukraine, Kyiv, Ukraine, 2000, 31, 13–32. (in
Ukrainian)
- Antonova T., Dmytryshyn M., Vozna S. Some properties of
approximants for branched continued fractions of the special form with
positive and alternating-cign Pprtial numerators. Carpathian Math.
Publ. 2018, 10 (1), 3–13.
doi:10.15330/cmp.10.1.3-13
- Antonova T., Dmytryshyn R. Truncation error bounds for branched
continued fraction whose partial denominators are equal to unity.
Mat. Stud. 2020, 54 (1), 3–14.
doi:10.30970/ms.54.1.3-14
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for the
branched continued fraction \({\sum} _ {i_ {1=
1}}^ N\frac {a_ {i (1)}}{1}+{\sum} _ {i_ {2=
1}}^{i_1}\frac {a_ {i (2)}}{1}+{\sum} _ {i_ {3= 1}}^{i_2}\frac {a_
{i (3)}}{1}+\cdots\). Ukrainian Math. J. 2020,
72 (7), 1018–1029. doi:10.1007/s11253-020-01841-7
(translation of Ukrain. Mat. Zh. 2020, 72 (7), 877–885.
doi:10.37863/umzh.v72i7.2342 (in Ukrainian))
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation
of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\textbf{z})\).
Mathematics 2023, 11 (21), 4487.
doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn, S. On some
branched continued fraction expansions for Horn’s hypergeometric
function \(H_4(a,b;c,d;z_1,z_2)\)
ratios. Axioms 2023, 12 (3), 299.
doi:10.3390/axioms12030299
- Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction
representations of ratios of Horn’s confluent function \(H_6\). Constr. Math. Anal. 2023,
6 (1), 22–37. doi:10.33205/cma.1243021
- Baran O.E. Some domains of convergence of branched continued
fractions of a special form. Carpathian Math. Publ. 2013,
5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in
Ukrainian)
- Bilanyk I. A truncation error bound for some branched continued
fractions of the special form. Mat. Stud. 2019, 52
(2), 115–123. doi:10.30970/ms.52.2.115-123
- Bilanyk I.B., Bodnar D.I. On the convergence of branched
continued fractions of a special form in angular domains.
J. Math. Sci. 2020, 246 (2), 188–200.
doi:10.1007/s10958-020-04729-w (translation of Mat. Metody Fiz.-Mekh.
Polya 2017, 60 (3), 60–69. (in Ukrainian))
- Bilanyk I.B., Bodnar D.I. Estimation of the rates of pointwise
and uniform convergence of branched continued fractions with
inequivalent variables. J. Math. Sci. 2022, 265
(3), 423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody
Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in
Ukrainian))
- Bilanyk I.B., Bodnar D.I. Two-dimensional generalization of the
Thron-Jones theorem on the parabolic domains of convergence of continued
fractions. Ukrainian Math. J. 2023, 74 (9),
1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat.
Zh. 2022, 74 (9), 1155–1169.
doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
- Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986.
(in Russian)
- Bodnar D., Bilanyk I. Convergence criterion for branched
continued fractions of the special form with positive elements.
Carpathian Math. Publ. 2017, 9 (1), 13–21.
doi:10.15330/cmp.9.1.13-21
- Bodnar D.I., Kuchminska Kh.Yo. An analog of the van Vleck theorem
for two-dimensional continued fractions. Mat. Met. Fiz.-Mekh. Polya
1994, 42 (4), 21–25. (in Ukrainian)
- Bodnar O., Dmytryshyn R., Sharyn S. On the convergence of
multidimensional \(S\)-fractions with
independent variables. Carpathian Math. Publ. 2020,
12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
- Bodnar O.S., Dmytryshyn R.I. On the convergence of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2018, 10 (1), 58–64.
doi:10.15330/cmp.10.1.58-64
- Bodnarchuk P.I., Skorobogatko V.Y. Branched continued fractions and
their application. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
- Dmytryshyn R.I. Convergence of multidimensional \(A\)- and \(J\)-fractions with independent
variables. Comput. Methods Funct. Theory 2022, 22
(2), 229–242. doi:10.1007/s40315-021-00377-6
- Dmytryshyn R., Sharyn S. Approximation of functions of several
variables by multidimensional \(A\)-
and \(J\)-fractions with independent
variables, 2023. arXiv:2303.13136 [math.NA].
doi:10.48550/arXiv.2303.13136
- Dmytryshyn R., Sharyn S. Approximation of functions of several
variables by multidimensional \(S\)-fractions with independent
variables. Carpathian Math. Publ. 2021, 13 (3),
592–607. doi:10.15330/cmp.13.3.592-607
- Gragg W.B., Warner D.D. Two constructive results in continued
fractions. SCIAM J. Numer. Anal. 1983,
20 (6), 1187–1197. doi:10.1137/0720088
- Jensen J.L.W.V. Bidrag til kaedebrekernes teori. Festskrift til H.G.
Zeuthen, 1909. (in Danish)
- Jones W.B., Thron W.J. Convergence of continued fractions. Canad. J.
Math. 1968, 20, 1037–1055. doi:10.4153/CJM-1968-101-3
- Kuchminska H.Y. Two-dimensional continuous fractions. Pidstryhach
Institute of Applied Problems of Mechanics and Mathematics of the
National Academy of Sciences of Ukraine, Lviv, 2010.
- O’Donohoe M. Applications of continued fractions in one and more
variables. PhD Thesis. Brunel University, London, 1974.
- Perron O. The theory of continued fractions. Bd. 2. Teubner,
Stuttgart, 1957. (in German)
- Skorobogatko V.Ya. The theory of branched continued fractions and its
application in computational mathematics. Nauka, Moscow, 1983. (in
Russian)
- Sus’ O.M. On the estimates of the rate of convergence of
two-dimensional continued fractions with complex elements. Prykl.
Probl. Mekh. Mat. 2008, 6, 115–123. (in Ukrainian)
- van Vlek E.B. On the convergence of continued fractions with
complex elements. Trans. Amer. Math. Soc. 1901, 2
(3), 215–233. doi:10.2307/1986206
- Wall H.S. Analytic theory of continued fractions. D. Van Nostrand
Co., Inc, New York, 1948.