References

  1. Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables. U.S. Government Printing Office, Washington, 1964.
  2. Antonova T.M. Speed of convergence of branched continued fractions of the special form. Volyn Math. Bulletin 1999, 6, 3–8. (in Ukrainian)
  3. Antonova T.M., Bodnar D.I. Convergence regions of branched continued fractions of the special form. In: Stepanets O.I. (Ed.) Approximation Theory and Its Applications, Proceedings of Institute of Mathematics of NAS of Ukraine, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine, 2000, 31, 13–32. (in Ukrainian)
  4. Antonova T., Dmytryshyn M., Vozna S. Some properties of approximants for branched continued fractions of the special form with positive and alternating-cign Pprtial numerators. Carpathian Math. Publ. 2018, 10 (1), 3–13. doi:10.15330/cmp.10.1.3-13
  5. Antonova T., Dmytryshyn R. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3–14. doi:10.30970/ms.54.1.3-14
  6. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for the branched continued fraction \({\sum} _ {i_ {1= 1}}^ N\frac {a_ {i (1)}}{1}+{\sum} _ {i_ {2= 1}}^{i_1}\frac {a_ {i (2)}}{1}+{\sum} _ {i_ {3= 1}}^{i_2}\frac {a_ {i (3)}}{1}+\cdots\). Ukrainian Math. J. 2020, 72 (7), 1018–1029. doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Mat. Zh. 2020, 72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in Ukrainian))
  7. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\textbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
  8. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn, S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a,b;c,d;z_1,z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  9. Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction representations of ratios of Horn’s confluent function \(H_6\). Constr. Math. Anal. 2023, 6 (1), 22–37. doi:10.33205/cma.1243021
  10. Baran O.E. Some domains of convergence of branched continued fractions of a special form. Carpathian Math. Publ. 2013, 5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in Ukrainian)
  11. Bilanyk I. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (2), 115–123. doi:10.30970/ms.52.2.115-123
  12. Bilanyk I.B., Bodnar D.I. On the convergence of branched continued fractions of a special form in angular domains. J. Math. Sci. 2020, 246 (2), 188–200. doi:10.1007/s10958-020-04729-w (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 60–69. (in Ukrainian))
  13. Bilanyk I.B., Bodnar D.I. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265 (3), 423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in Ukrainian))
  14. Bilanyk I.B., Bodnar D.I. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukrainian Math. J. 2023, 74 (9), 1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat. Zh. 2022, 74 (9), 1155–1169. doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
  15. Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  16. Bodnar D., Bilanyk I. Convergence criterion for branched continued fractions of the special form with positive elements. Carpathian Math. Publ. 2017, 9 (1), 13–21. doi:10.15330/cmp.9.1.13-21
  17. Bodnar D.I., Kuchminska Kh.Yo. An analog of the van Vleck theorem for two-dimensional continued fractions. Mat. Met. Fiz.-Mekh. Polya 1994, 42 (4), 21–25. (in Ukrainian)
  18. Bodnar O., Dmytryshyn R., Sharyn S. On the convergence of multidimensional \(S\)-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
  19. Bodnar O.S., Dmytryshyn R.I. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2018, 10 (1), 58–64. doi:10.15330/cmp.10.1.58-64
  20. Bodnarchuk P.I., Skorobogatko V.Y. Branched continued fractions and their application. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
  21. Dmytryshyn R.I. Convergence of multidimensional \(A\)- and \(J\)-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
  22. Dmytryshyn R., Sharyn S. Approximation of functions of several variables by multidimensional \(A\)- and \(J\)-fractions with independent variables, 2023. arXiv:2303.13136 [math.NA]. doi:10.48550/arXiv.2303.13136
  23. Dmytryshyn R., Sharyn S. Approximation of functions of several variables by multidimensional \(S\)-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
  24. Gragg W.B., Warner D.D. Two constructive results in continued fractions. SCIAM J. Numer. Anal. 1983, 20 (6), 1187–1197. doi:10.1137/0720088
  25. Jensen J.L.W.V. Bidrag til kaedebrekernes teori. Festskrift til H.G. Zeuthen, 1909. (in Danish)
  26. Jones W.B., Thron W.J. Convergence of continued fractions. Canad. J. Math. 1968, 20, 1037–1055. doi:10.4153/CJM-1968-101-3
  27. Kuchminska H.Y. Two-dimensional continuous fractions. Pidstryhach Institute of Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine, Lviv, 2010.
  28. O’Donohoe M. Applications of continued fractions in one and more variables. PhD Thesis. Brunel University, London, 1974.
  29. Perron O. The theory of continued fractions. Bd. 2. Teubner, Stuttgart, 1957. (in German)
  30. Skorobogatko V.Ya. The theory of branched continued fractions and its application in computational mathematics. Nauka, Moscow, 1983. (in Russian)
  31. Sus’ O.M. On the estimates of the rate of convergence of two-dimensional continued fractions with complex elements. Prykl. Probl. Mekh. Mat. 2008, 6, 115–123. (in Ukrainian)
  32. van Vlek E.B. On the convergence of continued fractions with complex elements. Trans. Amer. Math. Soc. 1901, 2 (3), 215–233. doi:10.2307/1986206
  33. Wall H.S. Analytic theory of continued fractions. D. Van Nostrand Co., Inc, New York, 1948.