References

  1. Andrews L.C. Special functions for engineers and applied mathematicians. Macmillan Co., New York, 1985.
  2. Andrews G.E., Askey R., Roy R. Special functions. Cambridge University Press, Cambridge, 1999.
  3. Berg C., Ismail M.E.H. \(q\)-Hermite polynomials and classical orthogonal polynomials. Canad. J. Math. 1996, 48 (1), 43–63. doi:10.4153/CJM-1996-002-4
  4. Cao J., Huang J.-Y., Fadel M., Arjika S. A review on \(q\)-difference equations for Al-Salam-Carlitz polynomials and applications to \(U(n+1)\) type generating functions and Ramanujan’s integrals. Mathematics 2023, 11 (7), 1655. doi:10.3390/math11071655
  5. Cao J., Raza N., Fadel M. Two-variable \(q\)-Laguerre polynomials from the context of quasi-monomiality. J. Math. Anal. Appl. 2024, 535 (2), 128126. doi:10.1016/j.jmaa.2024.128126
  6. Dattoli G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In: Cocolicchio D., Dattoli G., Srivastava H.M. (Eds.) Proc. of the Workshop “Advanced Special functions and applications”, Melfi, Italy, 9–12 May, 1999, Rome, 2000, 147–164.
  7. Dattoli G. Generalized polynomials, operational identities and their applications. J. Comput. Appl. Math. 2000, 118 (1–2), 111–123. doi:10.1016/S0377-0427(00)00283-1
  8. Dattoli G., Ricci P.E., Marinelli L. Generalized truncated exponential polynomials and applications. Rend. Istit. Mat. Univ. Trieste 2002, 34, 9–18.
  9. Dattoli G., Cesarano C., Sacchetti D. A note on truncated polynomials. Appl. Math. Comput. 2003, 134 (2–3), 595–605. doi:10.1016/S0096-3003(01)00310-1
  10. Ernst T. A comprehensive treatment of \(q\)-calculus. Birkhäuser/Springer Basel AG, Basel, 2012.
  11. Fadel M., Raza N., Du W.-S. Characterizing \(q\)-Bessel functions of the first kind with their new summation and integral representations. Mathematics 2023, 11 (18), 3831. doi:10.3390/math11183831
  12. Fadel M., Muhyi A. On a family of \(q\)-modified-Laguerre-Appell polynomials. Arab J. Basic Appl. Sci. 2024, 31 (1), 165–176. doi:10.1080/25765299.2024.2314282
  13. Florenini R., Vinet L. Quantum algebras and \(q\)-special functions. Ann. Physics 1993, 221 (1), 53–70. doi:10.1006/aphy.1993.1003
  14. Gould H.W., Hopper A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29 (1), 51–63. doi:10.1215/S0012-7094-62-02907-1
  15. He M.X., Ricci P.E. Differential equation of Appell polynomials via the factorization method. J. Comput. Appl. Math. 2002, 139 (2), 231–237. doi:10.1016/S0377-0427(01)00423-X
  16. Ismail M.E.H., Stanton D., Viennot G. The combinatorics of \(q\)-Hermite polynomials and the Askey-Wilson integral. European J. Combin. 1987, 8 (4), 379–392. doi:10.1016/S0195-6698(87)80046-X
  17. Jackson F.H. On \(q\)-functions and a certain difference operator. Trans. Roy. Soc. Edinb. 1909, 46 (2), 253–281. doi:10.1017/S0080456800002751
  18. Jackson F.H. On \(q\)-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203.
  19. Kac V., Cheung P. Quantum calculus. Springer, New York, 2002.
  20. Khan S., Yasmin G., Ahmad N. On a new family related to truncated exponential and Sheffer polynomials. J. Math. Anal. Appl. 2014, 418 (2), 921–937. doi:10.1016/j.jmaa.2014.04.028
  21. Khan S., Yasmin G., Ahmad N. A note on truncated exponential-based Appell polynomials. Bull. Malays. Math. Sci. Soc. 2017, 40, 373–388. doi:10.1007/s40840-016-0343-1
  22. Khan S., Nahid T. Determinant forms, difference equations and zeros of the q-Hermite-Appell polynomials. Mathematics 2018, 6 (11), 285. doi:10.3390/math6110258
  23. Nalci S., Pashaev O.K. \(q\)-Analog of shock soliton solution. J. Phys. A: Math. Theor. 2010, 43 (44), 445205. doi:10.1088/1751-8113/43/44/445205
  24. Raza N., Fadel M., Nisar K.S., Zakarya M. On 2-variable \(q\)-Hermite polynomials. Aims Math. 2021, 6 (8), 8705–8727. doi:10.3934/math.2021506
  25. Riyasat M., Khan S., Nahid T. Quantum algebra \(\varepsilon_q(2)\) and 2D \(q\)-Bessel functions. Rep. Math. Phys. 2019, 83 (2), 191–206. doi:10.1016/S0034-4877(19)30039-4
  26. Riyasat M., Nahid T., Khan S. \(q\)-Tricomi functions and quantum algebra representations. Georgian Math. J. 2020, 28 (5), 793–803. doi:10.1515/gmj-2020-2079
  27. Srivastava H.M., Araci S., Khan W.A., Acikgöz M. A note on the truncated-exponential based Apostol-type polynomials. Symmetry 2019, 11 (4), 538. doi:10.3390/sym11040538
  28. Srivastava H.M., Riyasat M., Khan S., Araci S., Acikgoz M. A new approach to Legendre-truncated-exponential-based Sheffer sequences via Riordan arrays. Appl. Math. Comput. 2020, 369, article 124683. doi:10.1016/j.amc.2019.124683
  29. Szabłowski P.J. On the \(q\)-Hermite polynomials and their relationship with some other families of orthogonal polynomials. Demonstratio Math. 2013, 46 (4), 679–708. doi:10.1515/dema-2013-0485
  30. Yasmin G., Islahi H. On amalgamation of truncated exponential and Gould-Hopper polynomials. Tbilisi Math. J. 2021, 14 (1), 55–70. doi:10.32513/tmj/1932200815