References
- Andrews L.C. Special functions for engineers and applied
mathematicians. Macmillan Co., New York, 1985.
- Andrews G.E., Askey R., Roy R. Special functions. Cambridge
University Press, Cambridge, 1999.
- Berg C., Ismail M.E.H. \(q\)-Hermite polynomials and classical
orthogonal polynomials. Canad. J. Math. 1996, 48
(1), 43–63. doi:10.4153/CJM-1996-002-4
- Cao J., Huang J.-Y., Fadel M., Arjika S. A review on \(q\)-difference equations for
Al-Salam-Carlitz polynomials and applications to \(U(n+1)\) type generating functions and
Ramanujan’s integrals. Mathematics 2023, 11 (7),
1655. doi:10.3390/math11071655
- Cao J., Raza N., Fadel M. Two-variable \(q\)-Laguerre polynomials from the context
of quasi-monomiality. J. Math. Anal. Appl. 2024,
535 (2), 128126. doi:10.1016/j.jmaa.2024.128126
- Dattoli G. Hermite-Bessel and Laguerre-Bessel functions: A by-product
of the monomiality principle. In: Cocolicchio D., Dattoli G., Srivastava
H.M. (Eds.) Proc. of the Workshop “Advanced Special functions and
applications”, Melfi, Italy, 9–12 May, 1999, Rome, 2000, 147–164.
- Dattoli G. Generalized polynomials, operational identities and
their applications. J. Comput. Appl. Math. 2000,
118 (1–2), 111–123.
doi:10.1016/S0377-0427(00)00283-1
- Dattoli G., Ricci P.E., Marinelli L. Generalized truncated
exponential polynomials and applications. Rend. Istit. Mat. Univ.
Trieste 2002, 34, 9–18.
- Dattoli G., Cesarano C., Sacchetti D. A note on truncated
polynomials. Appl. Math. Comput. 2003, 134 (2–3),
595–605. doi:10.1016/S0096-3003(01)00310-1
- Ernst T. A comprehensive treatment of \(q\)-calculus. Birkhäuser/Springer Basel AG,
Basel, 2012.
- Fadel M., Raza N., Du W.-S. Characterizing \(q\)-Bessel functions of the first kind with
their new summation and integral representations. Mathematics 2023,
11 (18), 3831. doi:10.3390/math11183831
- Fadel M., Muhyi A. On a family of \(q\)-modified-Laguerre-Appell
polynomials. Arab J. Basic Appl. Sci. 2024, 31
(1), 165–176. doi:10.1080/25765299.2024.2314282
- Florenini R., Vinet L. Quantum algebras and \(q\)-special functions. Ann. Physics
1993, 221 (1), 53–70. doi:10.1006/aphy.1993.1003
- Gould H.W., Hopper A.T. Operational formulas connected with two
generalizations of Hermite polynomials. Duke Math. J. 1962,
29 (1), 51–63. doi:10.1215/S0012-7094-62-02907-1
- He M.X., Ricci P.E. Differential equation of Appell polynomials
via the factorization method. J. Comput. Appl. Math. 2002,
139 (2), 231–237. doi:10.1016/S0377-0427(01)00423-X
- Ismail M.E.H., Stanton D., Viennot G. The combinatorics of \(q\)-Hermite polynomials and the
Askey-Wilson integral. European J. Combin. 1987, 8
(4), 379–392. doi:10.1016/S0195-6698(87)80046-X
- Jackson F.H. On \(q\)-functions
and a certain difference operator. Trans. Roy. Soc. Edinb. 1909,
46 (2), 253–281. doi:10.1017/S0080456800002751
- Jackson F.H. On \(q\)-definite
integrals. Quart. J. Pure Appl. Math. 1910, 41,
193–203.
- Kac V., Cheung P. Quantum calculus. Springer, New York, 2002.
- Khan S., Yasmin G., Ahmad N. On a new family related to truncated
exponential and Sheffer polynomials. J. Math. Anal. Appl. 2014,
418 (2), 921–937. doi:10.1016/j.jmaa.2014.04.028
- Khan S., Yasmin G., Ahmad N. A note on truncated
exponential-based Appell polynomials. Bull. Malays. Math. Sci. Soc.
2017, 40, 373–388. doi:10.1007/s40840-016-0343-1
- Khan S., Nahid T. Determinant forms, difference equations and
zeros of the q-Hermite-Appell polynomials. Mathematics 2018,
6 (11), 285. doi:10.3390/math6110258
- Nalci S., Pashaev O.K. \(q\)-Analog of shock soliton solution.
J. Phys. A: Math. Theor. 2010, 43 (44), 445205.
doi:10.1088/1751-8113/43/44/445205
- Raza N., Fadel M., Nisar K.S., Zakarya M. On 2-variable \(q\)-Hermite polynomials. Aims Math.
2021, 6 (8), 8705–8727. doi:10.3934/math.2021506
- Riyasat M., Khan S., Nahid T. Quantum algebra \(\varepsilon_q(2)\) and 2D \(q\)-Bessel functions. Rep. Math. Phys.
2019, 83 (2), 191–206.
doi:10.1016/S0034-4877(19)30039-4
- Riyasat M., Nahid T., Khan S. \(q\)-Tricomi functions and quantum algebra
representations. Georgian Math. J. 2020, 28 (5),
793–803. doi:10.1515/gmj-2020-2079
- Srivastava H.M., Araci S., Khan W.A., Acikgöz M. A
note on the truncated-exponential based Apostol-type polynomials.
Symmetry 2019, 11 (4), 538. doi:10.3390/sym11040538
- Srivastava H.M., Riyasat M., Khan S., Araci S., Acikgoz M. A new
approach to Legendre-truncated-exponential-based Sheffer sequences via
Riordan arrays. Appl. Math. Comput. 2020, 369,
article 124683. doi:10.1016/j.amc.2019.124683
- Szabłowski P.J. On the \(q\)-Hermite polynomials and their
relationship with some other families of orthogonal polynomials.
Demonstratio Math. 2013, 46 (4), 679–708.
doi:10.1515/dema-2013-0485
- Yasmin G., Islahi H. On amalgamation of truncated
exponential and Gould-Hopper polynomials. Tbilisi Math. J. 2021,
14 (1), 55–70. doi:10.32513/tmj/1932200815