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A note on g-truncated exponential polynomials

Raza N.}, Fadel M.12, Cesarano C.3™

In this paper, we introduce the g-truncated exponential polynomials by means of the integral
form. Certain properties of the g-truncated exponential polynomials like series definition, recur-
rence relations, g-differential equations and integral representations are obtained. Also, we in-
troduce the associated g-truncated exponential polynomials, higher order g-truncated exponential
polynomials and higher order associated g-truncated exponential polynomials. Furthermore, we
obtain their integral forms, generating functions, series definitions, summation and operational for-
mulas.
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Introduction

Quantum calculus, briefly called g-calculus, is an emerging field of research. Forg — 17,
the quantum calculus led to the usual calculus. Recently, the field of quantum calculus has
been proven instrumental in several areas like mathematical sciences, quantum physics,
quantum mechanics, quantum algebra, approximation theory and operator theory etc. The
g-analogue of several special functions like g-Hermite polynomials, g-Laguerre polynomials,
g-Appell polynomials and g-Sheffer polynomials are established and studied. Very recently,
the quantum algebra representations of certain g-special functions like g-Tricomi functions,
2-variable g-Bessel functions, 2-variable g-Hermite polynomials, 2-variable g-Laguerre poly-
nomials, family of g-modified-Laguerre-Appell polynomials, characterizing g-Bessel functions
of the first kind and a review on g-difference equations for Al-Salam-Carlitz polynomials are
obtained [4,5,11,12,24-26].

Currently, we review some fundamental notions, symbols and conclusions from our results
in quantum mathematics that are required for the rest of this paper discussion.

The g-analogue of a complex number « is defined by [a]; = (1 —¢%)/(1—¢),0 < g <1
(see [2]). The g-factorial is defined by

] '_{[1]q[2]q...[n]q, n>1 0<g<1,
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The Gauss g-binomial coefficient (see [2]) is defined by

L I ) A U 1)1 B )
[kL Kt =kt (G )e(g9)n—k k=0,1,...,

The raising and lowering g-powers (see [2]) are defined by

n

(xFa)y =), [Z} qq(g) XK (+a)k. (1)

k=0

For n = 1, it is obvious that (x £+ a)% = (x £a). The two g-exponential functions (see [2]),
denoted by e;(x) and E;(x), are defined by

e(x)—;—ixn ]x\<L 0<g<1 (2)
! (1 =q) e =g [n]g" 1—q’ '
and
= (2"
Eq(x):(—x(l—q);q)oo: an W’ xeC, 0<g<l, 3)
n=0 q:
respectively. The relations between both g-exponential functions, namely
1
eg(X)Eg(—x) =1, x| < T (4)

and

Z

are established in [2] and [10], respectively. The q-derlvatlve of a function f with respect to x
(see [17]), denoted by Dy, f(x), is defined by

qxf() M, 0<q<1, X#O.

qx — x

Also, for any two functions f(x) and g(x), we have

Dq,x(f(x)g(x)) = f(x)Dgxg(x) + g(qx) Dy f(x). )
In particular, we have
Dy Eq(ax) = aEq(agx). (6)

By mathematical induction, it is easy to verify that the kth order g-derivative of the g-exponen-
tial functions are
Dglxeq(rxx) = (xkeq((xx), k>1, (7)

and
D yEqlax) =a q( )Eq((xq x), k>1, (8)

where Dg/x denotes the kth order g-derivative with respect to x.
The Heine’s binomial formula

= ki[m*k_l} * mec, )
—0 q
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is given in [19], where

{a] p(a+1)
q

— , 0<g<1, aB€C, (10)
Bl, T pr g
(see [10]). The g-Gamma function I'y(«) (see [2,19]) is given by

/17‘7 X" 1E(—gqx)dgx =Tg(a), a>0, 0<g<1 x€C. (11)
0

From equation (9), it can easily be verified (see [2]) that

1 o [m]q

e

Dyt (12)
The g-Hermite polynomials, which are defined in several ways, has vast literature due to its
wide applications in various fields of mathematics and physics; therefore, a lot has been writ-
ten about them (see, e.g., [3,16,22,23,29]). Recently, N. Raza et al. [24] defined the 2-variable
g-Hermite polynomials by means of the following generating function

o0 t}’l
eq(Xt>eq(yt2> = Z Hn,l](xr y) [Vl] ! (13)
k=0 q-:
and series definition
H (xy)—[n]'['f}ﬂ 0<k<n (14)
A T K —2k T T

Truncated exponential polynomials (TEP for short) have been proven to play a significant
role in the evaluating integrals involving products of special functions in the physical sciences.
TEP are important in the applied mathematics as they may be characterized using several
methods such as orthogonality criteria, generating functions, differential equations, integral
transformations, recurrence relations, and operational formulae. Mathematical and physical
science researchers value the helpful qualities of generalizations and extensions in their appli-
cations. For instance, the generalizations of TEP via monomiality principle, convolution of the
2-variable truncated-exponential polynomials with Sheffer polynomials by using operational
methods, truncated exponential-based Appell polynomials, 3-variable Legendre-truncated-
exponential-based Sheffer sequences, truncated-exponential based Apostol-type polynomials,
and hybrid family of truncated exponential-Gould-Hopper polynomials are introduced and
studied in [8,20,21,27,28,30]. The properties of the family of truncated special polynomials
are relatively little known.

The TEP e, (x) are defined (see [1]) by the consequence series

en(x) =Y %, (15)

which is the sum of first (n + 1) terms of the Maclaurin’s series of ¢*. These polynomials
appear in many problems of optical and quantum mechanics. The first systematic study of
properties of these polynomials is given by G. Dattoli et al. [9]. Most of the properties of TEP
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en(x) can be derived from its series definition, given by equation (15). We note that the e, (x)
have (see [9]) the following integral representation

) = o [ exp(-0)+ 0 (16)

T on!

G. Dattoli et al. [9] defined the 2nd order TEP by the integral representation

pen) = 7 [ exp(=0)Hu(x, 00

and the mth order TEP [,,e4(x) by the integral representation as

1 [ m
ien(®) = o [ exp (=0 H" (x, O)ac. )
The integral representation (see [9]) of mth order associated TEP [, e,(f‘) (x) is given by
@ () = 2 T (= H™ (x. DVd 18
et (1) = o [ exp(=0) 2 H (3, 0)d. (18)

We motivated by the fact that the TEP e, (x) has applications in different fields of mathe-
matics and sciences and by the work of G. Dattoli and his co-authors on characteristics of the
TEP e, (x). The rest of the paper is organized as follows. In Section 1, we introduce the 4-TEP by
means of the integral form. Certain properties for the g-TEP like series definition, recurrence
relations, g-differential equations and integral representations are obtained. In Section 2, we
introduce the associated g-TED, higher order g-TEP and higher order associated g-TEP. Also,
we obtain their integral forms, generating functions and series definitions. In Section 3, sum-
mation and operational formulas are established.

1 The g-truncated exponential polynomials

In this section, we introduce the g-TEP E, (x) by means of integral representation and
obtain their generating function, series definition, recurrence relations, differential equations.
In view of equation (16), we define the E; ;(x) as

1
1 11—
Bug() = gy [ B0 @+ 005, (19
which on using equation (1), gives
1 N [T .
Enq(x) = [”—]q!k;) [Z]qq(Z)xk/ol ! Eq(—=q0)C kdqg- (20)

Therefore, using (11) in equation (20) and then simplifying, we get the following series
definition of E,; 4(x):

k
En,q(x):zq(z)ﬁq', xeC, 0<g<1, 0<k<n 1)
k=0 :

The subsequent theorem is used to prove the generating function of E,; 4(x).
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Theorem 1. The g-TEP E,, 4(x) satisfy the following generating function

1
(1-1)

where E;(xt) is the g-exponential function, given by equation (3).

> 1
Eq(xt) = r;)En’q(X)tn, X € C, |f| < ﬂ, 0< q < 1, (22)

Proof. In view of (21), we have

00 o N k xk
Z Epq(x)t" = Z Z q(z)_'t",
n=0 n=0k=0 [k]q'

which on using the following series rearrangement technique (see [1])

i iA(k,n) = i iA(k,n—k) (23)

n=0 k=0 n=0 k=0
gives
00 00 00 (k) xk ‘ 00 00 (k) xk r
Y Eng(0)t" =3 ) g e=t" =) 4"y g\t
n=0 n=0k=0 [k]q' n=0 k=0 [k]q'

which on using equation (9) for m = 1 and (3), gives assertion (22). The proof of Theorem 1 is
completed. O

Replacing x by ax in (22), then taking g-partial derivative of both sides of resultant equation
with respect to x by using (6) and then again using (22) in the resultant equation, we get

DgxEngq(ax) = aEy_14(agx), a,x€C, 0<g<1l, n>1, (24)

d
which, for g — 17 and a = 1, gives 7o (x) = ey—1(x) (see [9]). Again, taking g-partial
derivative of both sides of equation (24) with respect to x and then using (24) in the right hand
side of resultant equation, we get

Dglen,q(ax) = aqun_z,q(aqzx), a,xe€C, 0<g<1l, n>2

Following the same steps k — 1 times, equation (24) gives the following k' order g-partial
derivative of E, 4(x) with respect to x:

DZ,xEn,q(ax) = akq(é)En_qu(aqu), a,x€C, 0<q<1, n>k

Remark 1. To establish the q-differential recurrence relations and q-operational differential
equation for q-TEP E, 4(x), we recall the definition of q-dilatation operator TX, which acts on
any function of the complex variable z in the following manner (see [13]):

T f(z) = f(4"2), z€C, keR, 0<gq<]1, (25)

which satisfy the property T; 'T1 f(z) = f(z).
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Also, it is worth to recall [2], that

(x—a)f™" = (x —a)y’(x —q"a)y (26)
and (x —a);" =1/(x —q "a)j. In particular, for x = 1 and a = ¢, equation (26) gives
(1= =1 -1 —q"n". (27)

The subsequent theorem is used to prove the existence of the pure and g-differential recur-
rence relations for E;; ;(x).

Theorem 2. The g-TEP E, 4(x) satisfy the following pure and g-differential recurrence rela-
tions:

(1l + 30" Ena () + 7B (£) = " Erca(x) = 04 Uyasng () =0, w=1, (29
(14 x)Eng(qx) +q[nlgEng(x) = gxEn_1,4(9%) — [n+1]gEnt14(x) =0, n=>1, (29)
([n]g + x4") Eng (%) + 4" Eng G) — Xq"Dg Ty 'Eng (%) — [n+ 1gEuy14(x) = 0, (30)
(14 x)Enq(qx) +q[nlgEnq(x) — qxDgxEng(x) — [+ 1]gEps1,4(x) = 0. (31)

Proof. Taking g-partial derivative of (22) with respect to t by taking f;(t) = E;(xt) and
84(t) = 1/(1 —t) and then using (5), we get

i 1 1
Y DysEng(x)t" = Dy (7= ) Eal(t) + =gy DusEa(ixt),
n=

which on using equations (6) and (12), gives

1 X
HX:: tn 1_ (1—_ t)%Eq(xt) + 7(1 — qt)

Using (27) for m = n = 1 in the right hand side of preceding formula and then simplifying,
we get

E;(qgxt).

(1—1t) ZEM [t = (1_1qt>Eq(xt)—l—%

Using (22) in the right hand side of preceding equation, we get
Y Eng(x)[n]gt" = 2 Epq(x
n=1

Comparing the coefficients of t from both sides of preceding equation then simplifying, we
get assertion (28).

Also, taking g-partial derivative of equation (22) with respect to t by taking g, (t) = E4(xt)
and f,;(t) = 1/(1 — t) then using (5), we get

E;(qgxt).

00 1 1
Z n _
n=0 D‘i,tEn,q(x)t N (1 ) Dq tEq(Xt) + Dq t(l )Eq(th>
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which on using equations (6) and (12), gives

[ee]

Z E, q(x) [n] [

L En q = ﬁ]ﬂq(qxt) + ﬁ]ﬂq(qxt).

Using (27) for m = n = 1 in the right hand side of preceding equation, we get

Z Enq(x)[n]gt" " = (1 >y Eq(qxt) + = t)zl ey Eq(qxt),

which on using (22) in the right hand side of preceding equation and then simplifying, gives

(1—gqt) i nlgt" 1 = (x+1) i —qu:Enqqxt‘”Jrl
=1 n=0 n=0

Comparing the coefficients of t from both sides of preceding equation then simplifying, we
get the assertion (29).
Using (25) in the left hand side of equation (28), gives

X _
([n]q + an)En,q(x) + ann,q <6> - anTx 1En—1,q(qx) - [n + 1]qEn+1,q(x) =0.

Using (24) in the left hand side of preceding equation, gives assertion (30). Finally, using
(24) in the left hand side of equation (29), gives assertion (31). The proof of Theorem 2 is
completed. O

Example 1. Applying formulas (28)—(31), we have the following:

<[2]2/3 + x@)z)Ez,z/a(x) + <§> E; 2/3(32x> - x<§>2E1,2/3(x) — [8]a/3E32/3(x) =0,

3 3x 3x

3x
(1+x)E3 sy T 1[3]3/4153,3/4( x) — e 3/4< 2 ) — [4]3/4E43/4(x) =0,

< 4/5 T x( ) )54,4/5(x) + (é) E44/5(54x> - x<%>4D4/5,xTxlE4,4/5(x> = [5]a/5Es5.4/5(x),
(1+ X)E5,5/6(%xx> +5/6[5]5/6E55/6(x) = (5/6)xD5/6,xEs5/6(x) = [6]5/6Ee5/6(x)-
The following theorem about the g-differential equations for g-TEP E; 4(x).
Theorem 3. The q-TEP E,; 4(x) satisfy the following q-differential equations
[xq"'D; Ty % = (xq" '+ q" T+ [ = 1) Dy Ty '+ [1]g] Enyg(x) =0, (32)
[qxD} Ty ' — (q[n — 1)g + xTy + Tx) Dy Ty ' + [1)4] Eng(x) =0, (33)
wheren > 1,0 < g < L.

Proof. Substituting n by n — 1 into the expression (30), we get
— — X — —
(b = 1lg + 30" D Er1g(3) + 4" Ensg (7) = 38" Do Ty B g (x) = [algEnag(3) = 0.

Using (25), preceding equation gives

an_qu,xTx_zEn—l,q(qx) - an_lTx_lEn—l,q(qx) - qn_lTx_zEn—l,q(qx)
—[n- 1]qTx_1En—1,q(‘7x) + [”]qEn,q(x) =0,



A note on g-truncated exponential polynomials 135

wheren > 1,0 < g < 1. Using (24) for a = 1 in the left hand side of the preceding equation
and then simplifying the resultant equation, we get assertion (32).
Similarly, substituting n by n — 1 into the expression (31), we get

(1+ x)En—l,q (qx) +qln — 1]qEn—1,q(x) - ‘VCDq,xEn—l,q(x) - [”]qEn,q(x) =Y,
wheren > 1,0 < g < 1. Using (25), aforementioned equation gives
QXDq,nglEnfl,q(qx> - XEnfl,q(qx> - Enfl,q(qx)
—q[n — 1]qT;1Enfl,q(‘7x) + [n]gEn,q(x) =0,

wheren > 1,0 < g < 1. Using (24) for a = 1 in the left hand side of the preceding equation
and then simplifying the resultant equation, we get assertion (33). The proof of Theorem 3 is
completed. O

Example 2. Applying formulas (32) and (33), we have the following equations:
[x(2/3)2D3 /5, Ty % — (x(2/3)* + (2/3)*T ' + [2]2/3) D23 Ty ' + [3l2/3]Es2/3(x) =0,
3/4xD3,, Ty — (3/4[3l3/4 + XTx + Te)D3/ax Ty + [4]3/4)E3/4(x) = 0.

To demonstrate the second result, it is worth recalling the definition of the factorization
method, which is used to study the decreasing and increasing operators and certain properties
of special polynomials (see [15]). The factorization method can be treated equivalent to the
monomiality principle (see [6]).

Let {p.(x)}5", be a sequence of polynomials such that deg(p,(x)) = n withn € Ny :=
{0,1,2,...}. Then the differential operators ¢, and ¢, , satisfying the properties ¢;, {pn(x)} =
pu—1(x) and ¢,/ {pn(x)} = pusr1(x), are called decreasing and increasing operators, respec-
tively. Obtaining the decreasing and increasing operators for a given sequence of polynomials
give rise to differential equation such as

P Pn {pn(x)} = pu(x). (34)

Currently, we obtain the raising and lowering operators for g-TEP E,;, ;(x). Using equation
(24) for a = 1/q, we have

1 1
Dq,xEn,q<ax) = B0, =1 0<g<l

Using (25) in the left hand side of above equation, we find

1
DTy 'Eng(x) = aEn,llq(x) n>1, 0<g<1,

which gives the lowering operator as
Png = qDg Ty L. (35)
Also, in view of (31), we have

4+ 1]3Eps1,4(x) = (14 x)Ty 4 q[n]g — qxDy,x) Enq(x),
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which gives the increasing operator as

1
[n+1],

WPrg = (14 x)Tx +q[nlg — qxDgx). (36)

Using (35) and (36) in equation (34), we get the following g-differential equation for the
q-TEP E; 4(x) as

q3xD§,xTx_1En,q(x) —(q(1+x)Tx + [”]qqz - qz)Dq,xTx_lEn,q(x) - qun,q(x) +[n+1]Enq(x) = 0.
Remark 2. In view of (24) fora = 1, we have
Enq(gx) = Dq,x(EnH,q(x)), xeC, 0<g<l

Taking g-integration of both sides of above equation from m tor, we get

r r
| Eug(@)dgx = | Dys(Bria ()

The g-definite integral of the q-derivative of a function f(x) is given (see [18]) as

[ Daf(0)dyx = flom) = £0).

r

This gives the following integral representations for q-TEP E, 4(x):

.
/m Eng(gx)dgx = (Ens1,4(r) — Eny14(m)), 0<qg<1, mreR. (37)

Since, in view of (21), E;, 4 (0) = 1, therefore, form = 0 and r = x, equation (37) gives
X
/ Eng(qz)dqz = Eny149(x) =1, x€C, 0<g<1l
0

2 The higher order g-truncated exponential polynomials

In this section, we introduce the associated g-TEP E,(f,; (x), higher order g-TEP (5 Eyq(x),

21 E*nq(x), mEng(x), jmE*nq(x) and mth order associated g-TEP [M}E,(f,;(x), [m]E*,(f,; (x) by
means of their integral forms. Also, we obtain their generating functions and series defini-
tions.

Currently, we introduce the associated g-TEP (Ag-TEP for short) E,(lat; (x) by means of the
following integral representation

1
G (a8 €+ D, 8)

n P
y {Z} 1D [T By (gt

Using (11) in aforementioned equation, we get

n (k)xkl"q(n—k+oc+1)

E'x)x: 2 ,
ma () = L 0

xeC, 0<g<l 0<k<n. (39)
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In view of equation (38), we have the following integral form

1
Eafy) () = ﬁ [T Eq0e o+ 0 (40)

and series definition
n ok xkl"q(n—k+oc+1)

41
=L “
Since (";%) = (%) + (§) — k(n — 1), therefore in view of equations (39) and (41), we have
*( n ® X
En,(q)(x) = q(z)E;(a,q) <q”—1) (42)

(a)

n
For x = 0, the above equation gives the following initial condition E,,’ (0) = q(Z). In view of
equations (40) and (41) for a = 0, we deduce for g-TEP E;, ,(x) the following integral form

1

1
Era() = gy [} Bal—a0 G+ 0t

and series definition

Eja(0) =Y 42 Rt

,\N
I
oS

Also, for « = 0, equation (42) gives
* n X
En,q(x) = q(z)En,q <qn_1 ) .

Now, we obtain the following result for generating function of Ag-TEP E,(f,; (x).

Theorem 4. The Aq-TEP Eg,’f‘q) (x) have the following generating function

Ip(a+1 e 1
Lﬂﬁ)l ,(xt) = Y E) xaeC, |t <=, 0<g<l. (43)
(1_t>q n=0 q

Proof. In view of (39), we have
(e) (“) - (9] n (k) x "
E;g(x)t" = g2 ———— T (a+n—k+1)t
n;) A Eogo Kot — kgt 1
which on using equation (23) gives
£ et - £, £ 0 e Ve
n=0 n=0k=0 :

Multiplying right-hand side of aforementioned formula by I';(a +1)/T;(a + 1) and then
using (10), we get

[ee]

5 e - £ e £ [ v
n=0

n=0 n q

which on using (3) and (9) in the right hand side of aforementioned equation gives asser-
tion (43). The proof of Theorem 4 is completed. O
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Consider the 2nd order g-TEP by means of the following integral integral forms

1
Ena() = gy 7 Ea(=a0) Ha(x, 0 49
and .
1 1—5
) = gy [ B0 Hua @0t 45)

Using (14) in equations (44) and (45), then using (11) in the right hand sides of resultant equa-
tions and comparing the equal powers of ¢ from both the sides, we get the following series
definitions of 2nd order g-TEP [y Esq(x) and 5 E;; ;(x):

[n/2]

x}’l—Zk 1 n
2 Eng(x) = Y =2 M <g— 0<g<l 0<k<g (46)
k=0 :
and
(/2] k 1
HEnq()_k;OW/ \x!<1—_q, 0<g<1, (47)
respectively.

Now, we obtain the following result for generating functions of 5 Eyq(x) and 5 E;, (%)

Theorem 5. The 2nd order q-TEP [y Eyq(x) and 3 E;, ,(x) have the following generating func-
tions:

s eq(xt) 1
Eo[zﬁfn,q(@f” =1 RLIH< Ty 0<4<1 (48)
and )
> . _eg(xt 1
r;)mEn,q(x)tn =1_7 x|, [t < T—¢ 0<qg<1, (49)
respectively.

Proof. In view of equation (46), we have

oo [n/2] x—2k

Z[zlEnq =3, ), =2,

n=0 k=0

which on using the following series rearrangement technique [1]

o o [n/Z
Y. ) Akn ZZAkn—Zk
n=0 k=0 n=0 k=

gives
n

o0 oo oo x
L pEng(@)1" =3 ) ot
n=0 k=0  n=0L"19"

which on using (9) for m = 1 and (2) gives assertion (48).
Similarly, following the same steps involved in the proof of assertion (48), equation (47)

gives assertion (49). The proof of Theorem 5 is completed. O
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As a generalization of 2-variable Hermite polynomials can be considered the Gould-
Hopper polynomials [14], which satisfy the generalized heat equation [7]. In view of (13),
we introduce the g-Gould-Hopper polynomials (g-GHP for short) Hr(,llz) (x,y) by means of the
following generating function

o0 tn

eq(xt)eg (™) = Y Huw (x,9) s
k=0 [n]g!

(50)

which on simplifying by using (2) in the left hand side and then comparing the equal powers

of t from both sides of the resultant equation, gives the following series definition of g-GHP
(m)

Hy,qg (x, )

[n/m] ykxnfmk n

(m) _

For m = 2, equations (50) and (51) reduce to (13) and (14), respectively. Therefore, for m = 2,
q-GHP H,([Z) (x,y) reduces to the 2-variable g-Hermite polynomial H;, 4(x, y).

Now, in view of equations (17) and (19), we introduce the mth order g-TEP |, Ey4(x) and
im)En,q(x) by means of the following integral forms

1
1 1—g m
) Eng () = Tl /01 T Eq(—qQ)H{3 (x,0)dyg (52)
and .
1 15 m
[m]E;;,q(x) = [n]q! /01 ! Eq(_qg)His,q)(Cr x)dqg, (53)

respectively. Using (51) in equations (52) and (53), then using (11) in the right hand sides of the
resultant equations and comparing the equal powers of t from both sides, we get the following
series definitions of mth order g-TEP [, Enq(x) and |, E;, o (%):

[n/m]

xn—mk 1 n
[m]En,q(X) = ];) m, |JC| < 1——(]’ O < q < 1, O S k S E, (54)
and
[n/m] - ok 1
[m]E;kl,q(x) = Z m, |x| < ﬂ, 0< q < 1, (55)
k=0 '
respectively.

We obtain the following result for generating functions of |, En,q(x) and [, E;, (%)

Theorem 6. The mth order q-TEP [, Enq(x) and ,,)E}, . (x) have the following generating func-
tions:

o eq(xt) 1
Eng(0)t" = 122 x|, [t < ——, 0<g<]1, (56)
L loiFa 1t 1—q
and (xt™)
ad . eq(x 1
Y mEng()t" = T xl <, 0<q<1, (57)
n=0 B -4

respectively.
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Proof. In view of (54), we have

oo [n/m] xnfmk

[m]En,q(x)t” = Z Z —_— "

w0 ko [ —mklgt

e

I
oS

n

which on using the following series rearrangement technique [1]

o o0 oo [1n/m]
Z Z Ak,n) = Z Z A(k,n — mk) (58)
n=0 k=0 n=0 k=0

gives
oo oo n

Y puEng(x)t" = Y kY =
n=0

k=0  n=0 [n]g!

tﬂ

which on using (2) and (9), gives assertion (56).
Similarly, following the same steps involved in the proof of assertion (56), equation (55)
gives assertion (57). The proof of Theorem 6 is completed. O

Currently, in view of equations (18), (52) and (53), we introduce the mth order associated
q-TEP [m]E,(ji‘q) (x) and [m]E:,,(; ) (x) by means of the following integral forms:

1
4 1 1T o m
B () = gy | B (a8 HE (5 D)dg 59)
and
(a 1 1% (m)
e () = gy | B8 HE @ 0, (60)
respectively, which on using (51) gives
(@) [n/m] yn—mk 11Tq i
im)Eng (x) = k;() W/O Eq(—q2)0 ", (61)
and )
[n/m] k .
* () _ X 1—q _ n—mk+u
By () = L e [ Bt (6

Using (11) in the right hand sides of equations (61) and (62), we get the following series
definitions of [, E,%) (x) and [m]E;,(; ) (x):

(n/m] 1 k+1

(@) () — glat+k+1)

mEng (x) = Y sk, (63)
) Erng (%) k;o [K] [ — mik] !

["/m}l”q(n—mk—i—oc—l—l) P

(o) oy
) Eng " (x) = kg%) [klg![n — mk],! *

(64)

respectively, wherea € C, |x| <1/(1—¢),0<g<1,0<k <n/m.
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We obtain the following result for generating functions of En’f‘q) (x) and [ EZ,(,;X ) (x).

Theorem 7. The mth order associated q-TEP |, En‘i‘q) (x) and [m]E;,(; ) (x) have the following gen-
erating functions:

= « n r +1

zgg[m]Enﬂ;(x)t = Eig§féggagﬁfeq(xt), (65)
k(@) Lga+1 .
Y [m]En,(q)(X) — q (“tyH)l eq(xt™), (66)
n=0 q

respectively, where |x|,[t| <1/(1—¢),0<g < 1.

Proof. In view of equation (63), we have

© co [n/m] yn— mkr gk+a+1)
Z [m]E Z Z n — mk]
n=0 n=0 k=
Using (58), we get
© o © a+k+D
Z [m]E;(fq) Z Z [ ] ' pntmk
n=0 n=0k=0 q-

Multiplying right-hand side of aforementioned formula by I';(« +1)/I';(a +1) and then
using equation (10), we obtain

> 2 [a+k X x
Z W) (x) (a+1)2{ L ] tmkz[n o
n=0 q n=0

k=0 q-

which on using (2) and (9) for m = a + 1 gives assertion (65).
Similarly, following the same steps involved in the proof of assertion (65), equation (64)
gives assertion (66). The proof of Theorem 7 is completed. O

Remark 3. In view of equations (13) and (50), for m = 2, the g-Gould Hopper polynomials
H,S’i? (x,y) reduce to the 2-variable q-Hermite polynomials H, 4(x, y). Therefore, for m = 2 the
mth order associated g-TEP ,, }E( q)( ) and [, E n(q )( ) reduce to the 2nd order associated q-TEP
2] E,(fq)( ) and [2]En,(q )( ), which we introduce in view of (59) and (60) as

1
@R () = gy ) Eg(—a0)8 Hng(x D,

q- /0

1
* 1 (14
[Z]En,(t;x)(x) = [Tl—]q'/o ! Eq(—4q8) 3" Hngq(Z, x)dqC,
respectively.

The other properties of [y E,%) (x) and | E,SZX )(x), listed in the Table 1, can be obtained by
substituting m = 2 in equations (63)—(66).
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S. No. | Polynomials Series definitions Generating functions
[n/2] =2k 0
() () Ty(a+k41) ( ) _ Ty(a+1)
L 2 En,q (%) 2Eng (¥) = = —[k} [n—2K], ngo[] g (08" = T -t tz)a+1eq(xt)
(/2] & 00
() * (o) . ¥Tg(n—2k+a+1) _ Ty(a+1)
1L [Z]En,q (x) [Z]En,q (x) - kgo [Z]q![n—Zk]q! E [Z]Enq (x) = (1q t)a+1 q(th)

Table 1. Series definitions and generating functions of [Z]Enﬁ; (x) and [2]E;,(; )(x)

Remark 4. In view of equations (19) and (38), we observe that for « = 0, Aq-TEP E,%) (x)
reduce to the q-TEP E,4(x). Also, in view of equations (52), (53), (59), and (60), we ob-

serve that, for « = 0, mth order Aq-TEP [M}E,(fq) (x) and [, EZ(LI; )(x) reduce to the mth order
q-TEP () En,q(x) and |, E*1q(x), respectively.

Further in view of Remark 3, for « = 0, the 2nd order Aq-TEP [Z]Er(fq) (x) and [Z]E;,(; ) (x) re-
duce to the 2nd order g-TEP (5 Epq(x) and 5 E;, ,(x), respectively. Also, since, forq — 17, the
results in quantum calculus reduce to the results of ordinary calculus. Therefore, forq — 1,
the results involving these q-TEP E;; 4(x), E('f‘)(x), [Z]E%)(x), [2]E:,,(;)(x), [m}ES,i;(x), [m}E:,,(;)(x),
21Enq (%), 21Enq(x), (mEngq(x), and [, E;; 5(x) reduce to the corresponding results for en(x),

el (1), men (1), men® (%), pen (), ien™ (1), pen(x), mes(x), mien(x), and pe(x),

respectively.

Remark 5. Taking k times g-partial derivatives with respect to x of both the sides of equation
(43) by using (8) and taking k times g-partial derivative of both the sides of equations (65) and
(66) by using (7) and then again using equations (43), (65), and (66) in the respective resultant
equations, we get

k
DEES (x) = @ EW, (gkx),

g.x=nq n—k,q 0<k<mn, (67)
Dtl;,x[m]Er(lti‘q)( ) = [m]ESX,)mkq(x)/ 0<k<n/m, (68)

In view of Remark 4, fora = 0, equat1ons (67)—(69) give the following kth derivatives of Ey, 4(x),
[m] En,q(x) and [m]E;';,q(x):
k
Dg,xEﬂ,q(x) = q(z)En—k,q(qu)r 0<k<mn,

Dlt;,x[m]En q(x> = [m]En—mk,q(x)/ 0<k<n/m, (70)
DY ximEng(*) = mEn_ig(¥), 0 <k<n/m, (71)

respectively. Further, in view of Remark 3, form = 2, equations (70) and (71) give the following
kth derivatives of 51 Enq(x) and 3 Ej , (x):

DII;,X[Z]E’W](X) = [Z}Eank,q(x)r Dg,x[Z]E;,q(x) = [Z]E;;—Zk,q(x)/ 0<k<n/2

3 Summation and operational formulas
(@)

In this section, we obtain some summation and operational formulas for E; 4(x), Epq (x),
21Enq (%), 21Eq(X), (m)Eng(X), (mEng (), (m] E E® )(x), and [m}EZ,(;)(x). First, we obtain the fol-

lowing summation formula for Ag-TEP E(’Xq) (x).
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(@)

Theorem 8. The following summation formula for Ej 4 (x)

Tj(a+n+1)
[n]y!

l;) ([;(]q! E’g”‘_)qu(x) =

, av,xeC, 0<g<l 0<k<n, (72)

holds true.

Proof. In view of equation (4), we have

eq(_xt)<rq(oc—l—1) £ (xt)) _ Ip(a+1)

q Vi
(1— t);’;+1 (1— t);’;+1

which on using (2), (9) and (43), gives
o0 o0 N tn+k o0
Yy E,W><x>% = {“‘n*”] Ty + 1)t
q: n=0 q

Using equation (23) in the left hand side and using (10) in the right hand side of the above
equation, we get

o 0 (<) ® Tya+n+1)
E )t = t"
Z:0 L k]! ”_k'q( ) n;) [n],!
which on comparing the equal powers of ¢t from both sides, gives assertion (72). The proof of
Theorem 8 is completed. O

4

In view of Remark 4 and Theorem 8, for « = 0, we deduce the following result.

Corollary 1. The following summation formula for E;, 4(x)

n xk
Z k])' nkqx)zl, 0<k<mn,
k=0 q:

holds true.

Next, we obtain some summation formulas for En‘i; (x) and [ EZ(LI; ) (x).

Theorem 9. The following summation formulas for [, Ey 4 (x) and |, EZ,(;‘ ) (x)

L R TN i S
and
nf]q @) kf; ).k[m1EZ(“3nk,q(x) - - (w[:]qn'+ Y 0sks % (74)
hold true, respectively.
Proof. In view of equation (4), we have
Ip(a+1) Fy(a+1)

W eq(xt)Eq(—xt) = 1=
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which on using (3), (9) and (65), gives

2 EN) (x) t”Zq ZJ{[H"] (o + )8,

q

Using (23) in the left hand side and (10) in the right hand side of the above equation and then
comparing the equal powers of t from both sides, we get assertion (73).
Again, in view of equation (4), we have

Ip(a+1)

1%
(1—-1t)g

p(a+1)

1l
(1—£)8

eq(xt")Eg(—xt™) =
which on using (3), (9) and (66), gives
00 k mk 00

Using (58) in the left hand side and (10) in the right hand side of the above equation and
then comparing the equal powers of ¢t from both sides, we get assertion (74). The proof of
Theorem 9 is completed. 0

In view of Remark 4 and Theorem 9, for « = 0, we deduce the following summation for-
mulas for [, Eyq(x) and [, E; ,(x).

Corollary 2. The following summation formulas for [, Eyq(x) and ) E}, ;(x)

S 6 _ O /m) EINUAOL
kgoq i, Pk = ) enuqoy, CSFS™
and
[n/m] g \k
k;) q(z)([kﬁ)’ By ig() =1, 0<k< T,

hold true, respectively.

Example 3. Applying formulas (72), (73) and (74), we have the following:

3 £(1/3) I'2/5(13/3)
k; k]2/3! Es” k2/3(x> Blass! ’
4 k x)k 1/3) 0’
3/4)(2) E!
LB/ g Bl = 1 63 /40
and
3 k(A \k
(5 (=0)° /3 T'5/6(22/3)
](;()(5/6) 2 Kls/6! 1121E62x5/6(%) = 6ls/s!

respectively.
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Theorem 10. The following operational rules for q-TEP E,%) (x) and |, EZ,(; ) (x)

T 1
Ey(—Xg ) EV) (x) = % xaeC, 0<g<l, (75)
. wl Ilj(a +n+1
Eg(— X5 ) mEni) (x) = ﬂqu) xaeC, 0<g<l1, (76)

hold true, respectively, where the kth power of q-operators X;,x and X, , are defined by

k
X — *
Xy = WTx Dy, X5 :=xDf, keN, (77)
respectively.
Proof. In view of (25), equation (72) can be rewritten as
no(=x)k L (k Iy(a+n+1)
yo O () EW (a") = ”7(—' 0<k<n. (78)
k=0 42 k]! [1]y!

If the g-operator Xf;,x is defined by (77), then using equations (3) and (67) in the left hand side
of (78), we obtain assertion (75).
Again, in view of (69), equation (74) becomes

[n/m] k
(—x) q(S)Dkx[m]E:(;)( ) = Iy(a+n+1)
= [Kg! i ’ [n],!
If the g-operator X,}”; is defined by (77), then using equation (3) in the left hand side of above
equation, we obtain assertion (76). The proof of Theorem 10 is completed. O

Corollary 3. The following operational rules for Ey 4(x) and [, E}, ,(x)
Eq(_Xq,x)En,q(x) - 1, Eq(_X;/x)[m]E;/q(x) - 1, X, X - C, 0 < q < 1,

hold true, respectively.

4 Conclusions

Many professionals related to special functions have an affinity for investigating quan-
tum calculus, which is an effective tool that has been frequently used in several applications
like modelling quantum computing, non-commutative probability, combinatorics, functional
analysis, mathematical physics, approximation theory and other fields. The interest in the
properties of classical TEP and their families is manifold and they appear indeed in many
problems in optics and quantum mechanics. Also, they played a crucial role in the evaluation
of integrals that involve products of special functions. This led to the introduction of g-TEP
and the presentation of their features using the integral representation of g-Gamma function
and a few g-calculus identities. In previous sections, we explored ways to enrich the situa-
tion with various types of g-TEP. The integral representation, generating function and series
definition of the g-TEP E, 4(x) are introduced and it was the most important part of all of
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these tasks. Certain properties of these polynomials like series definition, recurrence rela-

tions, differential equations are established in Section 1. Also, in Section 2, we introduce the

associated g-TEP Eg,’f‘q) (x), higher ordeli ?—TEP 21Eng (%), 2154 (%), (m)Eng(x), [ En (%) as well
o

as higher order associated g-TEP (,, E;; 4 (x) and [m}E:,,(; ) (x). Further, we derive their integral
forms, generating functions, series definitions. In Section 3, summation and operational for-
mulas for Eng(x), Efg (%), 1Eng (%), (1B (%), () Eng (), ()i (%), (i Eng (x), and , Enly ()
are also established. We have provided multiple examples to demonstrate the efficacy of the
proposed technique. We offer further study avenues, beginning with the work presented. The
findings reported in this research suggest many options for characterization. Furthermore, the
previous sections findings can be applied to different polynomial families to draw additional
conclusions.
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Y 11il1 cTaTTi BBEACHO §-yCivueHi eKCIIOHeHIIiaAbHi TIOAIHOMI 3a AOTIOMOTOIO iHTerpaAbHOI popMu.
OTpumano neBHi BAACTUBOCTI §-yCiUeHMX eKCTIOHEHIIHMX MTOAIHOMIB, TaKuX SIK BU3HAUEHHS PSIAY,
PeKypeHTHI CITIiBBiAHOIIIEHHSI, §-AVidpepeHIIiaAbHI PiBHSHHS Ta iHTerpaAbHI IpeAcTaBAeHHs. Kpim
TOTr0, MPEeACTABAEHO acOLOBaHi (-yCiueHi eKCIIOHeHIiaAbHI IOAITHOMY, (-YCideHi eKCIOHeHIIaAbHi
TMOAIHOMM BUIIIOTO MOPSIAKY Ta acollilfoBaHi §-yCcideHi eKCIIOHeHITiaAbHI TOAIHOMM BAILIIOTO TOPSIAKY.
Otpumano ixHi iHTerpabHi dopMy, MOpoAXyIoUi PyHKIIT, BU3HAUEHHS PSIAIB, I ACY MOBYBaHHSI Ta
orepartiiHi popMyan.

Kontouosi cnoéa i ¢ppasu: KBaHTOBe UMCAEHHS, YCiUeHi eKCIIOHeHIiaAbHI TIOAIHOMM, peKypeHTHi
CITiBBiAHOIIIEHHS, TIACYMOBYBaHHSI Ta iHTerpaabHi dpopmyan, g-morinomn Epmita, onepatop g-am-
AaTarii.



