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A note on q-truncated exponential polynomials

Raza N.1, Fadel M.1,2, Cesarano C.3,

In this paper, we introduce the q-truncated exponential polynomials by means of the integral

form. Certain properties of the q-truncated exponential polynomials like series definition, recur-

rence relations, q-differential equations and integral representations are obtained. Also, we in-

troduce the associated q-truncated exponential polynomials, higher order q-truncated exponential

polynomials and higher order associated q-truncated exponential polynomials. Furthermore, we

obtain their integral forms, generating functions, series definitions, summation and operational for-

mulas.
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Introduction

Quantum calculus, briefly called q-calculus, is an emerging field of research. For q → 1−,

the quantum calculus led to the usual calculus. Recently, the field of quantum calculus has

been proven instrumental in several areas like mathematical sciences, quantum physics,

quantum mechanics, quantum algebra, approximation theory and operator theory etc. The

q-analogue of several special functions like q-Hermite polynomials, q-Laguerre polynomials,

q-Appell polynomials and q-Sheffer polynomials are established and studied. Very recently,

the quantum algebra representations of certain q-special functions like q-Tricomi functions,

2-variable q-Bessel functions, 2-variable q-Hermite polynomials, 2-variable q-Laguerre poly-

nomials, family of q-modified-Laguerre-Appell polynomials, characterizing q-Bessel functions

of the first kind and a review on q-difference equations for Al-Salam-Carlitz polynomials are

obtained [4, 5, 11, 12, 24–26].

Currently, we review some fundamental notions, symbols and conclusions from our results

in quantum mathematics that are required for the rest of this paper discussion.

The q-analogue of a complex number α is defined by [α]q = (1 − qα)/(1 − q), 0 < q < 1

(see [2]). The q-factorial is defined by

[n]q! =

{

[1]q[2]q . . . [n]q, n ≥ 1, 0 < q < 1,

1, n = 0.
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The Gauss q-binomial coefficient (see [2]) is defined by

[

n

k

]

q

=
[n]q!

[k]q ![n − k]q !
=

(q; q)n

(q; q)k(q; q)n−k
, k = 0, 1, . . . , n.

The raising and lowering q-powers (see [2]) are defined by

(x ± a)n
q =

n

∑
k=0

[

n

k

]

q

q(
k
2)xn−k(±a)k . (1)

For n = 1, it is obvious that (x ± a)1
q = (x ± a). The two q-exponential functions (see [2]),

denoted by eq(x) and Eq(x), are defined by

eq(x) =
1

(x(1 − q); q)∞
=

∞

∑
n=0

xn

[n]q!
, |x| <

1

1 − q
, 0 < q < 1, (2)

and

Eq(x) = (−x(1 − q); q)∞ =
∞

∑
n=0

q(
2
n)

xn

[n]q!
, x ∈ C, 0 < q < 1, (3)

respectively. The relations between both q-exponential functions, namely

eq(x)Eq(−x) = 1, |x| <
1

1 − q
(4)

and

eq(x)Eq(y) =
∞

∑
k=0

(x + y)k
q

[k]q !
,

are established in [2] and [10], respectively. The q-derivative of a function f with respect to x

(see [17]), denoted by Dq,x f (x), is defined by

Dq,x f (x) =
f (qx) − f (x)

qx − x
, 0 < q < 1, x 6= 0.

Also, for any two functions f (x) and g(x), we have

Dq,x
(

f (x)g(x)
)

= f (x)Dq,x g(x) + g(qx)Dq,x f (x). (5)

In particular, we have

Dq,xEq(αx) = αEq(αqx). (6)

By mathematical induction, it is easy to verify that the kth order q-derivative of the q-exponen-

tial functions are

Dk
q,xeq(αx) = αkeq(αx), k ≥ 1, (7)

and

Dk
q,xEq(αx) = αkq(

k
2)Eq(αqkx), k ≥ 1, (8)

where Dk
q,x denotes the kth order q-derivative with respect to x.

The Heine’s binomial formula

1

(1 − t)m
q
=

∞

∑
k=0

[

m + k − 1

k

]

q

tk, m ∈ C, (9)
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is given in [19], where

[

α

β

]

q

=
Γq(α + 1)

Γq(β + 1)Γq(α − β + 1)
, 0 < q < 1, α, β ∈ C, (10)

(see [10]). The q-Gamma function Γq(α) (see [2, 19]) is given by

∫

1
1−q

0
xα−1Eq(−qx)dqx = Γq(α), α > 0, 0 < q < 1, x ∈ C. (11)

From equation (9), it can easily be verified (see [2]) that

Dq,t
1

(1 − t)m
q
=

[m]q

(1 − t)m+1
q

. (12)

The q-Hermite polynomials, which are defined in several ways, has vast literature due to its

wide applications in various fields of mathematics and physics; therefore, a lot has been writ-

ten about them (see, e.g., [3, 16, 22, 23, 29]). Recently, N. Raza et al. [24] defined the 2-variable

q-Hermite polynomials by means of the following generating function

eq(xt)eq(yt2) =
∞

∑
k=0

Hn,q(x, y)
tn

[n]q !
(13)

and series definition

Hn,q(x, y) = [n]q!
[n/2]

∑
k=0

ykxn−2k

[k]q ![n − 2k]q!
, 0 ≤ k ≤ n. (14)

Truncated exponential polynomials (TEP for short) have been proven to play a significant

role in the evaluating integrals involving products of special functions in the physical sciences.

TEP are important in the applied mathematics as they may be characterized using several

methods such as orthogonality criteria, generating functions, differential equations, integral

transformations, recurrence relations, and operational formulae. Mathematical and physical

science researchers value the helpful qualities of generalizations and extensions in their appli-

cations. For instance, the generalizations of TEP via monomiality principle, convolution of the

2-variable truncated-exponential polynomials with Sheffer polynomials by using operational

methods, truncated exponential-based Appell polynomials, 3-variable Legendre-truncated-

exponential-based Sheffer sequences, truncated-exponential based Apostol-type polynomials,

and hybrid family of truncated exponential-Gould-Hopper polynomials are introduced and

studied in [8, 20, 21, 27, 28, 30]. The properties of the family of truncated special polynomials

are relatively little known.

The TEP en(x) are defined (see [1]) by the consequence series

en(x) =
n

∑
k=0

xk

k!
, (15)

which is the sum of first (n + 1) terms of the Maclaurin’s series of ex. These polynomials

appear in many problems of optical and quantum mechanics. The first systematic study of

properties of these polynomials is given by G. Dattoli et al. [9]. Most of the properties of TEP
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en(x) can be derived from its series definition, given by equation (15). We note that the en(x)

have (see [9]) the following integral representation

en(x) =
1

n!

∫ +∞

0
exp(−ζ)(x + ζ)ndζ. (16)

G. Dattoli et al. [9] defined the 2nd order TEP by the integral representation

[2]en(x) =
1

n!

∫ ∞

0
exp(−ζ)Hn(x, ζ)dζ

and the mth order TEP [m]en(x) by the integral representation as

[m]en(x) =
1

n!

∫ ∞

0
exp(−ζ)H

(m)
n (x, ζ)dζ. (17)

The integral representation (see [9]) of mth order associated TEP [m]e
(α)
n (x) is given by

[m]e
(α)
n (x) =

1

n!

∫ ∞

0
exp(−ζ)ζα H

(m)
n (x, ζ)dζ. (18)

We motivated by the fact that the TEP en(x) has applications in different fields of mathe-

matics and sciences and by the work of G. Dattoli and his co-authors on characteristics of the

TEP en(x). The rest of the paper is organized as follows. In Section 1, we introduce the q-TEP by

means of the integral form. Certain properties for the q-TEP like series definition, recurrence

relations, q-differential equations and integral representations are obtained. In Section 2, we

introduce the associated q-TEP, higher order q-TEP and higher order associated q-TEP. Also,

we obtain their integral forms, generating functions and series definitions. In Section 3, sum-

mation and operational formulas are established.

1 The q-truncated exponential polynomials

In this section, we introduce the q-TEP En,q(x) by means of integral representation and

obtain their generating function, series definition, recurrence relations, differential equations.

In view of equation (16), we define the En,q(x) as

En,q(x) =
1

[n]q!

∫

1
1−q

0
Eq(−qζ)(ζ + x)n

q dqζ, (19)

which on using equation (1), gives

En,q(x) =
1

[n]q!

n

∑
k=0

[

n

k

]

q

q(
k
2)xk

∫

1
1−q

0
Eq(−qζ)ζn−kdqζ. (20)

Therefore, using (11) in equation (20) and then simplifying, we get the following series

definition of En,q(x):

En,q(x) =
n

∑
k=0

q(
k
2)

xk

[k]q !
, x ∈ C, 0 < q < 1, 0 ≤ k ≤ n. (21)

The subsequent theorem is used to prove the generating function of En,q(x).
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Theorem 1. The q-TEP En,q(x) satisfy the following generating function

1

(1 − t)
Eq(xt) =

∞

∑
n=0

En,q(x)tn, x ∈ C, |t| <
1

1 − q
, 0 < q < 1, (22)

where Eq(xt) is the q-exponential function, given by equation (3).

Proof. In view of (21), we have

∞

∑
n=0

En,q(x)tn =
∞

∑
n=0

n

∑
k=0

q(
k
2)

xk

[k]q !
tn,

which on using the following series rearrangement technique (see [1])

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

n

∑
k=0

A(k, n − k) (23)

gives

∞

∑
n=0

En,q(x)tn =
∞

∑
n=0

∞

∑
k=0

q(
k
2)

xk

[k]q !
tn+k =

∞

∑
n=0

tn
∞

∑
k=0

q(
k
2)

xk

[k]q !
tk,

which on using equation (9) for m = 1 and (3), gives assertion (22). The proof of Theorem 1 is

completed.

Replacing x by ax in (22), then taking q-partial derivative of both sides of resultant equation

with respect to x by using (6) and then again using (22) in the resultant equation, we get

Dq,xEn,q(ax) = aEn−1,q(aqx), a, x ∈ C, 0 < q < 1, n ≥ 1, (24)

which, for q → 1− and a = 1, gives
d

dx
en(x) = en−1(x) (see [9]). Again, taking q-partial

derivative of both sides of equation (24) with respect to x and then using (24) in the right hand

side of resultant equation, we get

D2
q,xEn,q(ax) = a2qEn−2,q(aq2x), a, x ∈ C, 0 < q < 1, n ≥ 2.

Following the same steps k − 1 times, equation (24) gives the following kth order q-partial

derivative of En,q(x) with respect to x:

Dk
q,xEn,q(ax) = akq(

k
2)En−k,q(aqkx), a, x ∈ C, 0 < q < 1, n ≥ k.

Remark 1. To establish the q-differential recurrence relations and q-operational differential

equation for q-TEP En,q(x), we recall the definition of q-dilatation operator Tk
z , which acts on

any function of the complex variable z in the following manner (see [13]):

Tk
z f (z) = f (qkz), z ∈ C, k ∈ R, 0 < q < 1, (25)

which satisfy the property T−1
z T1

z f (z) = f (z).
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Also, it is worth to recall [2], that

(x − a)m+n
q = (x − a)m

q (x − qma)n
q (26)

and (x − a)−n
q = 1/(x − q−na)n

q . In particular, for x = 1 and a = t, equation (26) gives

(1 − t)m+n
q = (1 − t)m

q (1 − qmt)n. (27)

The subsequent theorem is used to prove the existence of the pure and q-differential recur-

rence relations for En,q(x).

Theorem 2. The q-TEP En,q(x) satisfy the following pure and q-differential recurrence rela-

tions:

([n]q + xqn)En,q(x) + qnEn,q

(x

q

)

− xqnEn−1,q(x)− [n + 1]qEn+1,q(x) = 0, n ≥ 1, (28)

(1 + x)En,q(qx) + q[n]qEn,q(x)− qxEn−1,q(qx)− [n + 1]qEn+1,q(x) = 0, n ≥ 1, (29)

([n]q + xqn)En,q(x) + qnEn,q

(x

q

)

− xqnDq,xT−1
x En,q(x)− [n + 1]qEn+1,q(x) = 0, (30)

(1 + x)En,q(qx) + q[n]qEn,q(x)− qxDq,xEn,q(x)− [n + 1]qEn+1,q(x) = 0. (31)

Proof. Taking q-partial derivative of (22) with respect to t by taking fq(t) = Eq(xt) and

gq(t) = 1/(1 − t) and then using (5), we get

∞

∑
n=0

Dq,tEn,q(x)tn = Dq,t

( 1

1 − t

)

Eq(xt) +
1

(1 − qt)
Dq,tEq(xt),

which on using equations (6) and (12), gives

∞

∑
n=1

En,q(x)[n]qtn−1 =
1

(1 − t)2
q

Eq(xt) +
x

(1 − qt)
Eq(qxt).

Using (27) for m = n = 1 in the right hand side of preceding formula and then simplifying,

we get

(1 − t)
∞

∑
n=1

En,q(x)[n]qtn−1 =
1

(1 − qt)
Eq(xt) +

x(1 − t)

(1 − qt)
Eq(qxt).

Using (22) in the right hand side of preceding equation, we get

∞

∑
n=1

En,q(x)[n]qtn−1−
∞

∑
n=0

En,q(x)[n]qtn

=
∞

∑
n=0

qnEn,q

(x

q

)

tn + x
∞

∑
n=0

qnEn,q(x)tn − x
∞

∑
n=0

qnEn,q(x)tn+1.

Comparing the coefficients of t from both sides of preceding equation then simplifying, we

get assertion (28).

Also, taking q-partial derivative of equation (22) with respect to t by taking gq(t) = Eq(xt)

and fq(t) = 1/(1 − t) then using (5), we get

∞

∑
n=0

Dq,tEn,q(x)tn =
1

(1 − t)
Dq,tEq(xt) + Dq,t

( 1

1 − t

)

Eq(qxt),
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which on using equations (6) and (12), gives

∞

∑
n=1

En,q(x)[n]qtn−1 =
x

(1 − t)
Eq(qxt) +

1

(1 − t)2
q

Eq(qxt).

Using (27) for m = n = 1 in the right hand side of preceding equation, we get

∞

∑
n=1

En,q(x)[n]qtn−1 =
x

(1 − t)
Eq(qxt) +

1

(1 − t)(1 − qt)
Eq(qxt),

which on using (22) in the right hand side of preceding equation and then simplifying, gives

(1 − qt)
∞

∑
n=1

En,q(x)[n]qtn−1 = (x + 1)
∞

∑
n=0

En,q(qx)tn − qx
∞

∑
n=0

En,q(qx)tn+1.

Comparing the coefficients of t from both sides of preceding equation then simplifying, we

get the assertion (29).

Using (25) in the left hand side of equation (28), gives

([n]q + xqn)En,q(x) + qnEn,q

(x

q

)

− xqnT−1
x En−1,q(qx)− [n + 1]qEn+1,q(x) = 0.

Using (24) in the left hand side of preceding equation, gives assertion (30). Finally, using

(24) in the left hand side of equation (29), gives assertion (31). The proof of Theorem 2 is

completed.

Example 1. Applying formulas (28)–(31), we have the following:

(

[2]2/3 + x
(2

3

)2)

E2,2/3(x) +
(2

3

)2
E2,2/3

(3x

2

)

− x
(2

3

)2
E1,2/3(x)− [3]2/3E3,2/3(x) = 0,

(1 + x)E3,3/4
3x

4
+

3

4
[3]3/4E3,3/4(x)−

3x

4
E2,3/4

(3x

4

)

− [4]3/4E4,3/4(x) = 0,

(

[4]4/5 + x
(4

5

)4)

E4,4/5(x) +
(4

5

)4
E4,4/5

(5x

4

)

− x
(4

5

)4
D4/5,xT−1

x E4,4/5(x) = [5]4/5E5,4/5(x),

(1 + x)E5,5/6

(5x

6
x
)

+ 5/6[5]5/6E5,5/6(x)− (5/6)xD5/6,x E5,5/6(x) = [6]5/6E6,5/6(x).

The following theorem about the q-differential equations for q-TEP En,q(x).

Theorem 3. The q-TEP En,q(x) satisfy the following q-differential equations
[

xqn−1D2
q,xT−2

x − (xqn−1 + qn−1T−1
x + [n − 1]q)Dq,xT−1

x + [n]q
]

En,q(x) = 0, (32)
[

qxD2
q,xT−1

x − (q[n − 1]q + xTx + Tx)Dq,xT−1
x + [n]q

]

En,q(x) = 0, (33)

where n ≥ 1, 0 < q < 1.

Proof. Substituting n by n − 1 into the expression (30), we get

([n − 1]q + xqn−1)En−1,q(x) + qn−1En−1,q

( x

q

)

− xqn−1Dq,xT−1
x En−1,q(x)− [n]qEn,q(x) = 0.

Using (25), preceding equation gives

xqn−1Dq,xT−2
x En−1,q(qx)− xqn−1T−1

x En−1,q(qx)− qn−1T−2
x En−1,q(qx)

− [n − 1]qT−1
x En−1,q(qx) + [n]qEn,q(x) = 0,



A note on q-truncated exponential polynomials 135

where n ≥ 1, 0 < q < 1. Using (24) for a = 1 in the left hand side of the preceding equation

and then simplifying the resultant equation, we get assertion (32).

Similarly, substituting n by n − 1 into the expression (31), we get

(1 + x)En−1,q(qx) + q[n − 1]qEn−1,q(x)− qxDq,xEn−1,q(x)− [n]qEn,q(x) = 0,

where n ≥ 1, 0 < q < 1. Using (25), aforementioned equation gives

qxDq,xT−1
x En−1,q(qx)− xEn−1,q(qx)− En−1,q(qx)

− q[n − 1]qT−1
x En−1,q(qx) + [n]qEn,q(x) = 0,

where n ≥ 1, 0 < q < 1. Using (24) for a = 1 in the left hand side of the preceding equation

and then simplifying the resultant equation, we get assertion (33). The proof of Theorem 3 is

completed.

Example 2. Applying formulas (32) and (33), we have the following equations:

[x(2/3)2 D2
2/3,xT−2

x − (x(2/3)2 + (2/3)2T−1
x + [2]2/3)D2/3,xT−1

x + [3]2/3]E3,2/3(x) = 0,

[3/4xD2
3/4,x T−1

x − (3/4[3]3/4 + xTx + Tx)D3/4,xT−1
x + [4]3/4]E4,3/4(x) = 0.

To demonstrate the second result, it is worth recalling the definition of the factorization

method, which is used to study the decreasing and increasing operators and certain properties

of special polynomials (see [15]). The factorization method can be treated equivalent to the

monomiality principle (see [6]).

Let {pn(x)}∞
n=0 be a sequence of polynomials such that deg(pn(x)) = n with n ∈ N0 :=

{0, 1, 2, . . . }. Then the differential operators φ−
n and φ+

n , satisfying the properties φ−
n {pn(x)} =

pn−1(x) and φ+
n {pn(x)} = pn+1(x), are called decreasing and increasing operators, respec-

tively. Obtaining the decreasing and increasing operators for a given sequence of polynomials

give rise to differential equation such as

φ−
n+1φ+

n {pn(x)} = pn(x). (34)

Currently, we obtain the raising and lowering operators for q-TEP En,q(x). Using equation

(24) for a = 1/q, we have

Dq,xEn,q

(1

q
x
)

=
1

q
En−1,q(x), n ≥ 1, 0 < q < 1.

Using (25) in the left hand side of above equation, we find

Dq,xT−1
x En,q(x) =

1

q
En−1,q(x) n ≥ 1, 0 < q < 1,

which gives the lowering operator as

xφ−
n,q = qDq,xT−1

x . (35)

Also, in view of (31), we have

[n + 1]qEn+1,q(x) = ((1 + x)Tx + q[n]q − qxDq,x)En,q(x),
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which gives the increasing operator as

xφ+
n,q =

1

[n + 1]q
((1 + x)Tx + q[n]q − qxDq,x). (36)

Using (35) and (36) in equation (34), we get the following q-differential equation for the

q-TEP En,q(x) as

q3xD2
q,xT−1

x En,q(x)− (q(1+ x)Tx + [n]qq2 − q2)Dq,xT−1
x En,q(x)− q2En,q(x)+ [n+ 1]En,q(x) = 0.

Remark 2. In view of (24) for a = 1, we have

En,q(qx) = Dq,x(En+1,q(x)), x ∈ C, 0 < q < 1.

Taking q-integration of both sides of above equation from m to r, we get
∫ r

m
En,q(qx)dqx =

∫ r

m
Dq,x(En+1,q(x)))dq x.

The q-definite integral of the q-derivative of a function f (x) is given (see [18]) as
∫ m

r
Dq,x f (x)dq x = f (m)− f (r).

This gives the following integral representations for q-TEP En,q(x):
∫ r

m
En,q(qx)dqx = (En+1,q(r)− En+1,q(m)), 0 < q < 1, m, r ∈ R. (37)

Since, in view of (21), En,q(0) = 1, therefore, for m = 0 and r = x, equation (37) gives
∫ x

0
En,q(qz)dqz = En+1,q(x)− 1, x ∈ C, 0 < q < 1.

2 The higher order q-truncated exponential polynomials

In this section, we introduce the associated q-TEP E
(α)
n,q (x), higher order q-TEP [2]En,q(x),

[2]E
∗

n,q(x), [m]En,q(x), [m]E
∗

n,q(x) and mth order associated q-TEP [m]E
(α)
n,q (x), [m]E

∗(α)
n,q (x) by

means of their integral forms. Also, we obtain their generating functions and series defini-

tions.

Currently, we introduce the associated q-TEP (Aq-TEP for short) E
(α)
n,q (x) by means of the

following integral representation

E
(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα(ζ + x)n

q dqζ, (38)

which on using (1) gives

E
(α)
n,q (x) =

1

[n]q!

n

∑
k=0

[

n

k

]

q

q(
k
2)xk

∫

1
1−q

0
Eq(−qζ)ζn−k+αdqζ.

Using (11) in aforementioned equation, we get

E
(α)
n,q (x) =

n

∑
k=0

q(
k
2)

xkΓq(n − k + α + 1)

[k]q ![n − k]q!
, x ∈ C, 0 < q < 1, 0 ≤ k ≤ n. (39)
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In view of equation (38), we have the following integral form

E
∗(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα(x + ζ)n

q dqζ (40)

and series definition

E
∗(α)
n,q (x) =

n

∑
k=0

q(
n−k

2 ) xkΓq(n − k + α + 1)

[k]q ![n − k]q!
. (41)

Since (n−k
2 ) = (n

2) + (k
2)− k(n − 1), therefore in view of equations (39) and (41), we have

E
∗(α)
n,q (x) = q(

n
2)E

(α)
n,q

( x

qn−1

)

. (42)

For x = 0, the above equation gives the following initial condition E
∗(α)
n,q (0) = q(

n
2). In view of

equations (40) and (41) for α = 0, we deduce for q-TEP E∗
n,q(x) the following integral form

E∗
n,q(x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)(x + ζ)n

q dqζ

and series definition

E∗
n,q(x) =

n

∑
k=0

q(
n−k

2 ) xk

[k]q!
.

Also, for α = 0, equation (42) gives

E∗
n,q(x) = q(

n
2)En,q

( x

qn−1

)

.

Now, we obtain the following result for generating function of Aq-TEP E
(α)
n,q (x).

Theorem 4. The Aq-TEP E
(α)
n,q (x) have the following generating function

Γq(α + 1)

(1 − t)α+1
q

Eq(xt) =
∞

∑
n=0

E
(α)
n,q (x)tn, x, α ∈ C, |t| <

1

1 − q
, 0 < q < 1. (43)

Proof. In view of (39), we have

∞

∑
n=0

E
(α)
n,q (x)tn =

∞

∑
n=0

n

∑
k=0

q(
k
2)

xk

[k]q ![n − k]q !
Γq(α + n − k + 1)tn,

which on using equation (23) gives

∞

∑
n=0

E
(α)
n,q (x)tn =

∞

∑
n=0

∞

∑
k=0

q(
k
2)

xk

[k]q !

Γq(α + n + 1)

[n]q!
tn+k.

Multiplying right-hand side of aforementioned formula by Γq(α + 1)/Γq(α + 1) and then

using (10), we get

∞

∑
n=0

E
(α)
n,q (x)tn =

∞

∑
k=0

q(
k
2)

xk

[k]q !
tkΓq(α + 1)

∞

∑
n=0

[

α + n

n

]

q

tn,

which on using (3) and (9) in the right hand side of aforementioned equation gives asser-

tion (43). The proof of Theorem 4 is completed.
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Consider the 2nd order q-TEP by means of the following integral integral forms

[2]En,q(x) =
1

[n]q!

∫

1
1−q

0
Eq(−qζ)Hn,q(x, ζ)dqζ (44)

and

[2]E
∗
n,q(x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)Hn,q(ζ, x)dqζ. (45)

Using (14) in equations (44) and (45), then using (11) in the right hand sides of resultant equa-

tions and comparing the equal powers of t from both the sides, we get the following series

definitions of 2nd order q-TEP [2]En,q(x) and [2]E
∗
n,q(x):

[2]En,q(x) =
[n/2]

∑
k=0

xn−2k

[n − 2k]q!
, |x| <

1

1 − q
, 0 < q < 1, 0 ≤ k ≤

n

2
, (46)

and

[2]E
∗
n,q(x) =

[n/2]

∑
k=0

xk

[k]q !
, |x| <

1

1 − q
, 0 < q < 1, (47)

respectively.

Now, we obtain the following result for generating functions of [2]En,q(x) and [2]E
∗
n,q(x).

Theorem 5. The 2nd order q-TEP [2]En,q(x) and [2]E
∗
n,q(x) have the following generating func-

tions:
∞

∑
n=0

[2]En,q(x)tn =
eq(xt)

1 − t2
, |x|, |t| <

1

1 − q
, 0 < q < 1, (48)

and
∞

∑
n=0

[2]E
∗
n,q(x)tn =

eq(xt2)

1 − t
, |x|, |t| <

1

1 − q
, 0 < q < 1, (49)

respectively.

Proof. In view of equation (46), we have

∞

∑
n=0

[2]En,q(x)tn =
∞

∑
n=0

[n/2]

∑
k=0

xn−2k

[n − 2k]q!
tn,

which on using the following series rearrangement technique [1]

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

[n/2]

∑
k=0

A(k, n − 2k)

gives
∞

∑
n=0

[2]En,q(x)tn =
∞

∑
k=0

t2k
∞

∑
n=0

xn

[n]q!
tn,

which on using (9) for m = 1 and (2) gives assertion (48).

Similarly, following the same steps involved in the proof of assertion (48), equation (47)

gives assertion (49). The proof of Theorem 5 is completed.
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As a generalization of 2-variable Hermite polynomials can be considered the Gould-

Hopper polynomials [14], which satisfy the generalized heat equation [7]. In view of (13),

we introduce the q-Gould-Hopper polynomials (q-GHP for short) H
(m)
n,q (x, y) by means of the

following generating function

eq(xt)eq(ytm) =
∞

∑
k=0

H
(m)
n,q (x, y)

tn

[n]q !
, (50)

which on simplifying by using (2) in the left hand side and then comparing the equal powers

of t from both sides of the resultant equation, gives the following series definition of q-GHP

H
(m)
n,q (x, y)

H
(m)
n,q (x, y) = [n]q!

[n/m]

∑
k=0

ykxn−mk

[k]q ![n − mk]q!
, 0 ≤ k ≤

n

m
. (51)

For m = 2, equations (50) and (51) reduce to (13) and (14), respectively. Therefore, for m = 2,

q-GHP H
(m)
n,q (x, y) reduces to the 2-variable q-Hermite polynomial Hn,q(x, y).

Now, in view of equations (17) and (19), we introduce the mth order q-TEP [m]En,q(x) and

[m]E
∗
n,q(x) by means of the following integral forms

[m]En,q(x) =
1

[n]q!

∫

1
1−q

0
Eq(−qζ)H

(m)
n,q (x, ζ)dqζ (52)

and

[m]E
∗
n,q(x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)H

(m)
n,q (ζ, x)dqζ, (53)

respectively. Using (51) in equations (52) and (53), then using (11) in the right hand sides of the

resultant equations and comparing the equal powers of t from both sides, we get the following

series definitions of mth order q-TEP [m]En,q(x) and [m]E
∗
n,q(x):

[m]En,q(x) =
[n/m]

∑
k=0

xn−mk

[n − mk]q!
, |x| <

1

1 − q
, 0 < q < 1, 0 ≤ k ≤

n

m
, (54)

and

[m]E
∗
n,q(x) =

[n/m]

∑
k=0

xk

[k]q !
, |x| <

1

1 − q
, 0 < q < 1, (55)

respectively.

We obtain the following result for generating functions of [m]En,q(x) and [m]E
∗
n,q(x).

Theorem 6. The mth order q-TEP [m]En,q(x) and [m]E
∗
n,q(x) have the following generating func-

tions:
∞

∑
n=0

[m]En,q(x)tn =
eq(xt)

1 − tm
, |x|, |t| <

1

1 − q
, 0 < q < 1, (56)

and
∞

∑
n=0

[m]E
∗
n,q(x)tn =

eq(xtm)

1 − t
, |x|, |t| <

1

1 − q
, 0 < q < 1, (57)

respectively.
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Proof. In view of (54), we have

∞

∑
n=0

[m]En,q(x)tn =
∞

∑
n=0

[n/m]

∑
k=0

xn−mk

[n − mk]q!
tn,

which on using the following series rearrangement technique [1]

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

[n/m]

∑
k=0

A(k, n − mk) (58)

gives
∞

∑
n=0

[m]En,q(x)tn =
∞

∑
k=0

tmk
∞

∑
n=0

xn

[n]q!
tn,

which on using (2) and (9), gives assertion (56).

Similarly, following the same steps involved in the proof of assertion (56), equation (55)

gives assertion (57). The proof of Theorem 6 is completed.

Currently, in view of equations (18), (52) and (53), we introduce the mth order associated

q-TEP [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x) by means of the following integral forms:

[m]E
(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα H

(m)
n,q (x, ζ)dqζ (59)

and

[m]E
∗(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα H

(m)
n,q (ζ, x)dqζ, (60)

respectively, which on using (51) gives

[m]E
(α)
n,q (x) =

[n/m]

∑
k=0

xn−mk

[k]q![n − mk]q!

∫

1
1−q

0
Eq(−qζ)ζk+αdqζ (61)

and

[m]E
∗(α)
n,q (x) =

[n/m]

∑
k=0

xk

[k]q ![n − mk]q !

∫

1
1−q

0
Eq(−qζ)ζn−mk+αdqζ. (62)

Using (11) in the right hand sides of equations (61) and (62), we get the following series

definitions of [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x):

[m]E
(α)
n,q (x) =

[n/m]

∑
k=0

Γq(α + k + 1)

[k]q ![n − mk]q!
xn−mk, (63)

[m]E
∗(α)
n,q (x) =

[n/m]

∑
k=0

Γq(n − mk + α + 1)

[k]q ![n − mk]q!
xk, (64)

respectively, where α ∈ C, |x| < 1/(1 − q), 0 < q < 1, 0 ≤ k ≤ n/m.
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We obtain the following result for generating functions of [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x).

Theorem 7. The mth order associated q-TEP [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x) have the following gen-

erating functions:

∞

∑
n=0

[m]E
(α)
n,q (x)tn =

Γq(α + 1)

(1 − tm)α+1
q

eq(xt), (65)

∞

∑
n=0

[m]E
∗(α)
n,q (x)tn =

Γq(α + 1)

(1 − t)α+1
q

eq(xtm), (66)

respectively, where |x|, |t| < 1/(1 − q), 0 < q < 1.

Proof. In view of equation (63), we have

∞

∑
n=0

[m]E
(α)
n,q (x)tn =

∞

∑
n=0

[n/m]

∑
k=0

xn−mkΓq(k + α + 1)

[k]q ![n − mk]q!
tn.

Using (58), we get
∞

∑
n=0

[m]E
(α)
n,q (x)tn =

∞

∑
n=0

∞

∑
k=0

xnΓq(α + k + 1)

[n]q![k]q !
tn+mk.

Multiplying right-hand side of aforementioned formula by Γq(α + 1)/Γq(α + 1) and then

using equation (10), we obtain

∞

∑
n=0

[m]E
(α)
n,q (x)tn = Γq(α + 1)

∞

∑
k=0

[

α + k

k

]

q

tmk
∞

∑
n=0

xn

[n]q!
tn,

which on using (2) and (9) for m = α + 1 gives assertion (65).

Similarly, following the same steps involved in the proof of assertion (65), equation (64)

gives assertion (66). The proof of Theorem 7 is completed.

Remark 3. In view of equations (13) and (50), for m = 2, the q-Gould Hopper polynomials

H
(m)
n,q (x, y) reduce to the 2-variable q-Hermite polynomials Hn,q(x, y). Therefore, for m = 2 the

mth order associated q-TEP [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x) reduce to the 2nd order associated q-TEP

[2]E
(α)
n,q (x) and [2]E

∗(α)
n,q (x), which we introduce in view of (59) and (60) as

[2]E
(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα Hn,q(x, ζ)dqζ,

[2]E
∗(α)
n,q (x) =

1

[n]q!

∫

1
1−q

0
Eq(−qζ)ζα Hn,q(ζ, x)dqζ,

respectively.

The other properties of [2]E
(α)
n,q (x) and [2]E

(∗α)
n,q (x), listed in the Table 1, can be obtained by

substituting m = 2 in equations (63)–(66).
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S. No. Polynomials Series definitions Generating functions

I. [2]E
(α)
n,q (x) [2]E

(α)
n,q (x) =

[n/2]

∑
k=0

xn−2kΓq(α+k+1)

[k]q![n−2k]q!

∞

∑
n=0

[2]E
(α)
n,q (x)tn =

Γq(α+1)

(1−t2)α+1
q

eq(xt)

II. [2]E
∗(α)
n,q (x) [2]E

∗(α)
n,q (x) =

[n/2]

∑
k=0

xkΓq(n−2k+α+1)

[k]q![n−2k]q!

∞

∑
n=0

[2]E
∗(α)
n,q (x)tn =

Γq(α+1)

(1−t)α+1
q

eq(xt2)

Table 1. Series definitions and generating functions of [2]E
(α)
n,q (x) and [2]E

∗(α)
n,q (x)

Remark 4. In view of equations (19) and (38), we observe that for α = 0, Aq-TEP E
(α)
n,q (x)

reduce to the q-TEP En,q(x). Also, in view of equations (52), (53), (59), and (60), we ob-

serve that, for α = 0, mth order Aq-TEP [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x) reduce to the mth order

q-TEP [m]En,q(x) and [m]E
∗

n,q(x), respectively.

Further in view of Remark 3, for α = 0, the 2nd order Aq-TEP [2]E
(α)
n,q (x) and [2]E

∗(α)
n,q (x) re-

duce to the 2nd order q-TEP [2]En,q(x) and [2]E
∗
n,q(x), respectively. Also, since, for q → 1−, the

results in quantum calculus reduce to the results of ordinary calculus. Therefore, for q → 1−,

the results involving these q-TEP En,q(x), E
(α)
n,q (x), [2]E

(α)
n,q (x), [2]E

∗(α)
n,q (x), [m]E

(α)
n,q (x), [m]E

∗(α)
n,q (x),

[2]En,q(x), [2]E
∗
n,q(x), [m]En,q(x), and [m]E

∗
n,q(x) reduce to the corresponding results for en(x),

e
(α)
n (x), [2]e

(α)
n (x), [2]e

∗(α)
n (x), [m]e

(α)
n (x), [m]e

∗(α)
n (x), [2]en(x), [2]e

∗
n(x), [m]en(x), and [m]e

∗
n(x),

respectively.

Remark 5. Taking k times q-partial derivatives with respect to x of both the sides of equation

(43) by using (8) and taking k times q-partial derivative of both the sides of equations (65) and

(66) by using (7) and then again using equations (43), (65), and (66) in the respective resultant

equations, we get

Dk
q,xE

(α)
n,q (x) = q(

k
2)E

(α)
n−k,q(q

kx), 0 ≤ k ≤ n, (67)

Dk
q,x[m]E

(α)
n,q (x) = [m]E

(α)
n−mk,q(x), 0 ≤ k ≤ n/m, (68)

Dk
q,x[m]E

∗(α)
n,q (x) = [m]E

∗(α)
n−mk,q(x), 0 ≤ k ≤ n/m. (69)

In view of Remark 4, for α = 0, equations (67)–(69) give the following kth derivatives of En,q(x),

[m]En,q(x) and [m]E
∗
n,q(x):

Dk
q,xEn,q(x) = q(

k
2)En−k,q(q

kx), 0 ≤ k ≤ n,

Dk
q,x[m]En,q(x) = [m]En−mk,q(x), 0 ≤ k ≤ n/m, (70)

Dk
q,x[m]E

∗
n,q(x) = [m]E

∗
n−mk,q(x), 0 ≤ k ≤ n/m, (71)

respectively. Further, in view of Remark 3, for m = 2, equations (70) and (71) give the following

kth derivatives of [2]En,q(x) and [2]E
∗
n,q(x):

Dk
q,x[2]En,q(x) = [2]En−2k,q(x), Dk

q,x[2]E
∗
n,q(x) = [2]E

∗
n−2k,q(x), 0 ≤ k ≤ n/2.

3 Summation and operational formulas

In this section, we obtain some summation and operational formulas for En,q(x), E
(α)
n,q (x),

[2]En,q(x), [2]E
∗
n,q(x), [m]En,q(x), [m]E

∗
n,q(x), [m]E

(α)
n,q (x), and [m]E

∗(α)
n,q (x). First, we obtain the fol-

lowing summation formula for Aq-TEP E
(α)
n,q (x).
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Theorem 8. The following summation formula for E
(α)
n,q (x)

n

∑
k=0

(−x)k

[k]q !
E
(α)
n−k,q(x) =

Γq(α + n + 1)

[n]q!
, α, x ∈ C, 0 < q < 1, 0 ≤ k ≤ n, (72)

holds true.

Proof. In view of equation (4), we have

eq(−xt)

(

Γq(α + 1)

(1 − t)α+1
q

Eq(xt)

)

=
Γq(α + 1)

(1 − t)α+1
q

,

which on using (2), (9) and (43), gives

∞

∑
n=0

∞

∑
k=0

E
(α)
n,q (x)

(−x)k tn+k

[k]q !
=

∞

∑
n=0

[

α + n

n

]

q

Γq(α + 1)tn.

Using equation (23) in the left hand side and using (10) in the right hand side of the above

equation, we get
∞

∑
n=0

n

∑
k=0

(−x)k

[k]q !
E
(α)
n−k,q(x)tn =

∞

∑
n=0

Γq(α + n + 1)

[n]q!
tn,

which on comparing the equal powers of t from both sides, gives assertion (72). The proof of

Theorem 8 is completed.

In view of Remark 4 and Theorem 8, for α = 0, we deduce the following result.

Corollary 1. The following summation formula for En,q(x)

n

∑
k=0

(−x)k

[k]q!
En−k,q(x) = 1, 0 ≤ k ≤ n,

holds true.

Next, we obtain some summation formulas for [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x).

Theorem 9. The following summation formulas for [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x)

n

∑
k=0

q(
k
2)
(−x)k

[k]q ! [m]E
(α)
n−k,q(x) =

{

0, (n/m) /∈ N ∪ {0},

Γq(α + n + 1)/[n]q!, (n/m) ∈ N ∪ {0},
0 ≤ k ≤ n, (73)

and
[n/m]

∑
k=0

q(
k
2)
(−x)k

[k]q ! [m]E
∗(α)
n−mk,q(x) =

Γq(α + n + 1)

[n]q!
, 0 ≤ k ≤

n

m
, (74)

hold true, respectively.

Proof. In view of equation (4), we have

Γq(α + 1)

(1 − tm)α+1
q

eq(xt)Eq(−xt) =
Γq(α + 1)

(1 − tm)α+1
q

,
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which on using (3), (9) and (65), gives

∞

∑
n=0

[m]E
(α)
n,q (x)tn

∞

∑
k=0

q(
k
2)
(−x)ktk

[k]q !
=

∞

∑
n=0

[

α + n

n

]

q

Γq(α + 1)tnm.

Using (23) in the left hand side and (10) in the right hand side of the above equation and then

comparing the equal powers of t from both sides, we get assertion (73).

Again, in view of equation (4), we have

Γq(α + 1)

(1 − t)α+1
q

eq(xtm)Eq(−xtm) =
Γq(α + 1)

(1 − t)α+1
q

,

which on using (3), (9) and (66), gives

∞

∑
n=0

[m]E
∗(α)
n,q (x)tn

∞

∑
k=0

q(
k
2)
(−x)ktmk

[k]q !
=

∞

∑
n=0

[

α + n

n

]

q

Γq(α + 1)tn.

Using (58) in the left hand side and (10) in the right hand side of the above equation and

then comparing the equal powers of t from both sides, we get assertion (74). The proof of

Theorem 9 is completed.

In view of Remark 4 and Theorem 9, for α = 0, we deduce the following summation for-

mulas for [m]En,q(x) and [m]E
∗
n,q(x).

Corollary 2. The following summation formulas for [m]En,q(x) and [m]E
∗
n,q(x)

n

∑
k=0

q(
k
2)
(−x)k

[k]q ! [m]En−k,q(x) =

{

0, (n/m) /∈ N ∪ {0},

1, (n/m) ∈ N ∪ {0},
0 ≤ k ≤ n,

and
[n/m]

∑
k=0

q(
k
2)
(−x)k

[k]q ! [m]E
∗
n−mk,q(x) = 1, 0 ≤ k ≤

n

m
,

hold true, respectively.

Example 3. Applying formulas (72), (73) and (74), we have the following:

3

∑
k=0

(−x)k

[k]2/3!
E
(1/3)
3−k,2/3(x) =

Γ2/3(13/3)

[3]2/3!
,

4

∑
k=0

(3/4)(
k
2)
(−x)k

[k]3/4! [2]
E
(1/3)
4−k,3/4(x) =

{

0,

Γq(16/3)/[4]3/4!,

and
3

∑
k=0

(5/6)(
k
2)
(−x)k

[k]5/6! [2]
E
∗(1/3)
6−2k,5/6(x) =

Γ5/6(22/3)

[6]5/6!
,

respectively.
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Theorem 10. The following operational rules for q-TEP E
(α)
n,q (x) and [m]E

∗(α)
n,q (x)

Eq(−Xq,x)E
(α)
n,q (x) =

Γq(α + n + 1)

[n]q!
, x, α ∈ C, 0 < q < 1, (75)

Eq(−X∗
q,x)[m]E

∗(α)
n,q (x) =

Γq(α + n + 1)

[n]q!
, x, α ∈ C, 0 < q < 1, (76)

hold true, respectively, where the kth power of q-operators Xq,x and X∗
q,x are defined by

Xk
q,x :=

xk

qk(k−1)
T−k

x Dk
q,x, X∗k

q,x := xkDk
q,x, k ∈ N, (77)

respectively.

Proof. In view of (25), equation (72) can be rewritten as

n

∑
k=0

(−x)k

q(
k
2)[k]q !

T−k
x q(

k
2)E

(α)
n−k,q(q

kx) =
Γq(α + n + 1)

[n]q!
, 0 ≤ k ≤ n. (78)

If the q-operator Xk
q,x is defined by (77), then using equations (3) and (67) in the left hand side

of (78), we obtain assertion (75).

Again, in view of (69), equation (74) becomes

[n/m]

∑
k=0

(−x)k

[k]q!
q(

k
2)Dk

q,x[m]E
∗(α)
n,q (x) =

Γq(α + n + 1)

[n]q!
.

If the q-operator X∗k
q,x is defined by (77), then using equation (3) in the left hand side of above

equation, we obtain assertion (76). The proof of Theorem 10 is completed.

Corollary 3. The following operational rules for En,q(x) and [m]E
∗
n,q(x)

Eq(−Xq,x)En,q(x) = 1, Eq(−X∗
q,x)[m]E

∗
n,q(x) = 1, x, α ∈ C, 0 < q < 1,

hold true, respectively.

4 Conclusions

Many professionals related to special functions have an affinity for investigating quan-

tum calculus, which is an effective tool that has been frequently used in several applications

like modelling quantum computing, non-commutative probability, combinatorics, functional

analysis, mathematical physics, approximation theory and other fields. The interest in the

properties of classical TEP and their families is manifold and they appear indeed in many

problems in optics and quantum mechanics. Also, they played a crucial role in the evaluation

of integrals that involve products of special functions. This led to the introduction of q-TEP

and the presentation of their features using the integral representation of q-Gamma function

and a few q-calculus identities. In previous sections, we explored ways to enrich the situa-

tion with various types of q-TEP. The integral representation, generating function and series

definition of the q-TEP En,q(x) are introduced and it was the most important part of all of
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these tasks. Certain properties of these polynomials like series definition, recurrence rela-

tions, differential equations are established in Section 1. Also, in Section 2, we introduce the

associated q-TEP E
(α)
n,q (x), higher order q-TEP [2]En,q(x), [2]E

∗
n,q(x), [m]En,q(x), [m]E

∗
n,q(x) as well

as higher order associated q-TEP [m]E
(α)
n,q (x) and [m]E

∗(α)
n,q (x). Further, we derive their integral

forms, generating functions, series definitions. In Section 3, summation and operational for-

mulas for En,q(x), E
(α)
n,q (x), [2]En,q(x), [2]E

∗
n,q(x), [m]En,q(x), [m]E

∗
n,q(x), [m]E

(α)
n,q (x), and [m]E

∗(α)
n,q (x)

are also established. We have provided multiple examples to demonstrate the efficacy of the

proposed technique. We offer further study avenues, beginning with the work presented. The

findings reported in this research suggest many options for characterization. Furthermore, the

previous sections findings can be applied to different polynomial families to draw additional

conclusions.
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У цiй статтi введено q-усiченi експоненцiальнi полiноми за допомогою iнтегральної форми.

Отримано певнi властивостi q-усiчених експоненцiйних полiномiв, таких як визначення ряду,

рекурентнi спiввiдношення, q-диференцiальнi рiвняння та iнтегральнi представлення. Крiм

того, представлено асоцiйованi q-усiченi експоненцiальнi полiноми, q-усiченi експоненцiальнi

полiноми вищого порядку та асоцiйованi q-усiченi експоненцiальнi полiноми вищого порядку.

Отримано їхнi iнтегральнi форми, породжуючi функцiї, визначення рядiв, пiдсумовування та

операцiйнi формули.

Ключовi слова i фрази: квантове числення, усiченi експоненцiальнi полiноми, рекурентнi

спiввiдношення, пiдсумовування та iнтегральнi формули, q-полiноми Ермiта, оператор q-ди-

латацiї.


