References

  1. Abramowitz M., Stegun I. Handbook of mathematical with formulas. U.S. Government Printing Office, Washington, 1964.
  2. Ahlfors L.V. Complex analysis. McGraw-Hill, Inc., New York, 1966.
  3. Apostol T.M. Introduction to analytical number theory. Springer-Verlag, New York, 1976.
  4. Askey R. Orthogonal polynomials and special functions. Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 1975.
  5. Bedoya D., Cesarano C., Dı́az S., Ramı́rez W. New classes of degenerate unified polynomials. Axioms 2023, 12 (1), 21. doi:10.3390/axioms12010021
  6. Bedoya D., Ortega O., Ramı́rez W., Castilla L. A new class of degenerate biparametric Apostol-type polynomials. Dolomites Res. Notes Approx. 2023, 16 (1), 10–19. doi:10.14658/pupj-drna-2023-1-2
  7. Bedoya D., Ortega O., Ramı́rez W., Urieles U. New biparametric families of Apostol-Frobenius-Euler polynomials of level \(m\). Mat. Stud. 2021, 55 (1), 10–23. doi:10.30970/ms.55.1.10-23
  8. Call G.S., Velleman D.J. Pascal’s matrices. Amer. Math. Monthly 1993, 100, 372–376. doi:10.2307/2324960
  9. Cesarano C., Ramı́rez W., Dı́az S., Shamaoon A., Khan W. On Apostol-type Hermite degenerated polynomials. Mathematics 2023, 11 (8), 1914. doi:10.3390/math11081914
  10. Cesarano C., Ramı́rez W., Khan S. A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Res. Notes Approx. 2022, 15 (1), 1–10. doi:10.14658/pupj-drna-2022-1-1
  11. Cesarano C., Ramı́rez W. Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Carpathian Math. Publ. 2022, 14 (2), 354–363. doi:10.15330/cmp.14.2.354-363
  12. Comtet L. Advanced combinatorics. Springer Dordrecht, Dordrecht, 1974.
  13. Hernandez J., Peralta D., Quintana Y. A look at generalized degenerate Bernoulli and Euler matrices. Mathematics 2023, 11 (12), 2731. doi:10.3390/math11122731
  14. Liu H., Wang W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309 (10), 3346–3363. doi:10.1016/j.disc.2008.09.048
  15. Luo Q.-M. Extensions of the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 2011, 48, 291–309.
  16. Luo Q., Srivastava H.M. Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308 (1), 290–302. doi:10.1016/j.jmaa.2005.01.020
  17. Luo Q., Srivastava H.M. Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217 (12), 5702–5728. doi:10.1016/j.amc.2010.12.048
  18. Natalini P., Bernardini A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 2003 (3), 155–163. doi:10.1155/S1110757X03204101
  19. Quintana Y., Ramı́rez W., Urieles A. Euler matrices and their algebraic properties revisited. Appl. Math. Inf. Sci. 2020, 14 (4), 583–596. doi:10.18576/amis/140407
  20. Quintana Y., Ramı́rez W., Urieles A. Generalized Apostol-type polynomial matrix and its algebraic properties. Math. Rep. 2019, 21 (2), 249–264.
  21. Quintana Y., Ramı́rez W., Urieles A. On an operational matrix method based on generalized Bernoulli polynomials of level \(m\). Calcolo 2018, 55 (3), 30. doi:10.1007/s10092-018-0272-5
  22. Rainville E.D. Special function. Chelsea Publishing Company, New York, 1960.
  23. Ramı́rez W., Castilla L., Urieles A. An extended generalized-extensions for the Apostol type polynomials. Abstr. Appl. Anal. 2018, 2018, 2937950. doi:10.1155/2018/2937950
  24. Ramı́rez W., Ortega M., Urieles A. New generalized Apostol Frobenius-Euler polynomials and their matrix approach. Kragujevac J. Math. 2021, 45 (3), 393–407. doi:10.46793/KgJMat2103.393O
  25. Srivastava H.M., Choi J. Series associated with the Zeta and related functions. Springer, Dordrecht, 2001.
  26. Srivastava H.M., Choi J. Zeta and \(q\)-Zeta functions and associated series and integrals. Elsevier, London, 2012.
  27. Szegő G. Orthogonal polynomials. American Mathematical Society, Providence, Rhode Island, 1939.
  28. Wang W., Jia C., Wang T. Some results on the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2008, 55 (6), 1322–1332. doi:10.1016/j.camwa.2007.06.021
  29. Zhang Z. The linear algebra of generalized Pascal matrix. Linear Algebra Appl. 1997, 250, 51–60. doi:10.1016/0024-3795(95)00452-1
  30. Zhang Z. Liu M.X. An extension of generalized Pascal matrix and its algebraic properties. Linear Algebra Appl. 1998, 271 (1–3), 169–177. doi:10.1016/S0024-3795(97)00266-8