References

  1. Abdel-Aziz H.S., Saad M.K. A study on special curves of AW (k)-type in the pseudo-Galilean space. arXiv preprint 2015, arXiv:1501.07532. doi:10.48550/arXiv.1501.07532
  2. Ali U., Nešović E., Ilarslan K. On generalized timelike Mannheim curves in Minkowski space-time. J. Dyn. Syst. Geom. Theor. 2015, 13 (1), 71–94. doi:10.1080/1726037X.2015.1035043
  3. Aydin M.E., Ergüt M. The equiform differential geometry of curves in 4-dimensional Galilean space \(G_4\). Stud. Univ. Babeş-Bolyai Math. 2013, 58 (3), 393–400.
  4. Bishop L.R. There is more than one way to frame a curve. Amer. Math. Monthly 1975, 82 (3), 246–251. doi:10.2307/2319846
  5. Bükcü B., Karacan M.K. Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3-space. Selçuk J. Appl. Math. 2010, 11 (1), 15–25.
  6. Bükcü B., Karacan M.K. Bishop frame of the spacelike curve with a spacelike principal normal in Minkowski 3-space. Commun. Fac. Sci. Univ. Ank. Series A1 2008, 57 (1), 13–22.
  7. Elsayied H.K., Elzawy M., Elsharkawy A. Equiform timelike normal curves in Minkowski 3-space. Far East J. Math. Sci. 2017, 101, 1619–1629.
  8. Erjavec Z., Divjak B. The equiform differential geometry of curves in the pseudo-Galilean space. Math. Commun. 2008, 13 (2), 321–332.
  9. Grbović M., Ilarslan K., Nešović E. On null pseudo null Mannheim curves in Minkowski 3-space. J. Geom. 2014, 105 (1), 177–183. doi:10.1007/s00022-013-0205-z
  10. Hanson A.J., Ma H. Parallel transport approach to curve framing. Techreports-TR425, Indiana University, Bloomington, 1995.
  11. Ilarslan K., Nešović E. Timelike and null normal curves in Minkowski space \(E_1^3\). Indian J. Pure Appl. Math. 2004, 35 (7), 881–888.
  12. Ilarslan K. Spacelike normal curves in Minkowski space \(E_1^3\). Turkish J. Math. 2005, 29 (1), 53–63.
  13. Karacan M.K., Bükcü B. Bishop frame of the timelike curve in Minkowski 3-space. SDUFASJS 2008, 3 (1) 80–90.
  14. Karacan M.K., Tunçer Y. Bäcklund transformations according to Bishop frame in \(E^3_1\). Acta Comment. Univ. Tartu. Math. 2015, 19 (2), 75–85. doi:10.12697/ACUTM.2015.19.07
  15. Kızıltuǧ S., Yaylı Y. Bertrand curves of AW(k)-type in the equiform geometry of the Galilean space. Abstr. Appl. Anal. 2014, 2014, 402360.
  16. Kocayigit H., Özdemir A., Çetin M., Arda B. Some characterizations of timelike curves according to Bishop frame in Minkowski 3-space. Int. J. Math. Anal. 2013, 7 (13–16), 767–779. doi:10.12988/ijma.2013.13076
  17. López R. Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 2014, 7 (1), 44–107. doi:10.36890/iejg.594497
  18. Nawratil G. Quaternionic approach to equiform kinematics and line-elements of Euclidean 4-space and 3-space. Comput. Aided Geom. Design 2016, 47, 150–162. doi:10.1016/j.cagd.2016.06.003
  19. O’Neill B. Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983.
  20. Ozturk U., Ozturk E.B.K., Ilarslan K. On the involute-evolute of the pseudonull curve in Minkowski 3-space. J. Appl. Math. 2013, 2013, 651495. doi:10.1155/2013/651495
  21. Tashkandy Y., Emam W., Cesarano C., Abd El-Raouf M.M., Elsharkawy A. Generalized spacelike normal curves in Minkowski three-space. Mathematics 2022, 10 (21), 4145. doi:10.3390/math10214145
  22. Walrave J. Curves and surfaces in Minkowski space. Doctoraatsverhandeling, K.U. Leuven, Leuven, 1995.
  23. Yılmaz S., Ünlütürk Y. A note on spacelike curves according to type-2 Bishop frame in Minkowski 3-space \(E_1^3\). Int. J. Pure Appl. Math. 2015, 103 (2), 321–332. doi:10.12732/ijpam.v103i2.16