References
- Ascher U.M., Robert M.M.M, Robert D.R. Numerical solution of boundary value problems for ordinary differential equations. In: Applied Mathematics, 13. Society for Industrial and Applied Mathematics, Prentice-Hall, 1995.
- Burden R.L., Faires J.D. Numerical Analysis. Brooks, Cole Pub. Co., Pacific Grove, California, 1997.
- Cavusoglu S., Mukhtarov O.S. A New treatment of the finite difference method for 2-Interval Sturm-Liouville problems. Mathematics in Engineering, Science and Aerospace (MESA) 2022, 13 (1), 217–227.
- Chawla M.M., Katti C.P. Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 1982, 39 (3), 341–350.
- Çavuşoğlu S., Mukhtarov O., Olğar H. Finite Difference Method for Approximate Solution of a Boundary Value Problem with Interior Singular Point. Konuralp J. Math. 2021, 9 (1), 40–48.
- Çavuşoğlu S., Mukhtarov O.S. A new finite difference method for computing approximate solutions of boundary value problems including transition conditions. Bull. Karaganda Univ. Series: Mathematics 2021, 102 (2), 54–61. doi:10.31489/2021m2/54-61
- El-Gebeily M.A., Abu-Zaid I.T. On a finite difference method for singular two-point boundary value problems. IMA J. Numer. Anal. 1998, 18 (2), 179–190. doi:10.1093/imanum/18.2.179
- Habibah U., Nielda A.M. Accuracy of the Shooting Method for Solving Boundary Condition Problems in the Sturm-Liouville Equation. EduMatSains 2023, 7 (2), 374–382. (in Indonesian)
- Kim S., Jeong D., Lee C., Kim J. Finite difference method for the multi-asset Black-Scholes equations. Mathematics 2020, 8 (3), 391. doi:10.3390/math8030391
- Kincaid D., Cheney E.W. Numerical analysis: mathematics of scientific computing. In: The Sally Series, Pure and Applied undergraduate texts, 2. American Math. Soc., Providence, Rhode Island, 2010.
- Yücel M., Mukhtarov O. Application of differential transform method and Adomian decomposition method for solving of one nonlinear boundary-value-transmission problem. AIP Conf. Proc. 2019, 2183 (1), 090011. doi:10.1063/1.5136211
- Kumar M. A three-point finite difference method for a class of singular two-point boundary value problems. J. Comput. Appl. Math. 2002, 145 (1), 89–97. doi:10.1016/S0377-0427(01)00537-4
- LeVeque R.J. Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics, Philadelphia, 2007.
- Li Z., Zhonghua Q., Tao T. Numerical solution of differential equations: introduction to finite difference and finite element methods. Cambridge University Press, Cambridge, 2017.
- Mukhtarov O.S., Aydemir K. The eigenvalue problem with interaction conditions at one interior singular point. Filomat 2017, 31 (17), 5411–5420. doi:10.2298/FIL1717411M
- Mukhtarov O.S., Aydemir K. Oscillation properties for non-classical Sturm-Liouville problems with additional transmission conditions. Math. Model. Anal. 2021, 26 (3), 432–443. doi:10.3846/mma.2021.13216
- Mukhtarov O., Olğar H., Aydemir K., Jabbarov I.Sh. Operator-Pencil Realization of one Sturm-Liouville Problem with Transmission Conditions. Appl. Comput. Math. 2018, 17 (3), 284–294.
- Pandey P.K. The numerical solution of three point third order boundary value problems in ODEs. Journal of Science and Arts 2020, 20 (3), 529-536. doi:10.46939/J.Sci.Arts-20.3-a03
- Şen E., Štikonas A. Computation of eigenvalues and eigenfunctions of a non-local boundary value problem with retarded argument. Complex Var. Elliptic Equ. 2022, 67 (7), 1662–1676.
- Shampine L.F. Numerical solution of ordinary differential equations. CRC Press, 1994.
- Uğurlu E., Tas K. Dependence of eigenvalues of some boundary value problems. Appl. Math. E-Notes 2021, 21, 81–88.