References

  1. Ascher U.M., Robert M.M.M, Robert D.R. Numerical solution of boundary value problems for ordinary differential equations. In: Applied Mathematics, 13. Society for Industrial and Applied Mathematics, Prentice-Hall, 1995.
  2. Burden R.L., Faires J.D. Numerical Analysis. Brooks, Cole Pub. Co., Pacific Grove, California, 1997.
  3. Cavusoglu S., Mukhtarov O.S. A New treatment of the finite difference method for 2-Interval Sturm-Liouville problems. Mathematics in Engineering, Science and Aerospace (MESA) 2022, 13 (1), 217–227.
  4. Chawla M.M., Katti C.P. Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 1982, 39 (3), 341–350.
  5. Çavuşoğlu S., Mukhtarov O., Olğar H. Finite Difference Method for Approximate Solution of a Boundary Value Problem with Interior Singular Point. Konuralp J. Math. 2021, 9 (1), 40–48.
  6. Çavuşoğlu S., Mukhtarov O.S. A new finite difference method for computing approximate solutions of boundary value problems including transition conditions. Bull. Karaganda Univ. Series: Mathematics 2021, 102 (2), 54–61. doi:10.31489/2021m2/54-61
  7. El-Gebeily M.A., Abu-Zaid I.T. On a finite difference method for singular two-point boundary value problems. IMA J. Numer. Anal. 1998, 18 (2), 179–190. doi:10.1093/imanum/18.2.179
  8. Habibah U., Nielda A.M. Accuracy of the Shooting Method for Solving Boundary Condition Problems in the Sturm-Liouville Equation. EduMatSains 2023, 7 (2), 374–382. (in Indonesian)
  9. Kim S., Jeong D., Lee C., Kim J. Finite difference method for the multi-asset Black-Scholes equations. Mathematics 2020, 8 (3), 391. doi:10.3390/math8030391
  10. Kincaid D., Cheney E.W. Numerical analysis: mathematics of scientific computing. In: The Sally Series, Pure and Applied undergraduate texts, 2. American Math. Soc., Providence, Rhode Island, 2010.
  11. Yücel M., Mukhtarov O. Application of differential transform method and Adomian decomposition method for solving of one nonlinear boundary-value-transmission problem. AIP Conf. Proc. 2019, 2183 (1), 090011. doi:10.1063/1.5136211
  12. Kumar M. A three-point finite difference method for a class of singular two-point boundary value problems. J. Comput. Appl. Math. 2002, 145 (1), 89–97. doi:10.1016/S0377-0427(01)00537-4
  13. LeVeque R.J. Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics, Philadelphia, 2007.
  14. Li Z., Zhonghua Q., Tao T. Numerical solution of differential equations: introduction to finite difference and finite element methods. Cambridge University Press, Cambridge, 2017.
  15. Mukhtarov O.S., Aydemir K. The eigenvalue problem with interaction conditions at one interior singular point. Filomat 2017, 31 (17), 5411–5420. doi:10.2298/FIL1717411M
  16. Mukhtarov O.S., Aydemir K. Oscillation properties for non-classical Sturm-Liouville problems with additional transmission conditions. Math. Model. Anal. 2021, 26 (3), 432–443. doi:10.3846/mma.2021.13216
  17. Mukhtarov O., Olğar H., Aydemir K., Jabbarov I.Sh. Operator-Pencil Realization of one Sturm-Liouville Problem with Transmission Conditions. Appl. Comput. Math. 2018, 17 (3), 284–294.
  18. Pandey P.K. The numerical solution of three point third order boundary value problems in ODEs. Journal of Science and Arts 2020, 20 (3), 529-536. doi:10.46939/J.Sci.Arts-20.3-a03
  19. Şen E., Štikonas A. Computation of eigenvalues and eigenfunctions of a non-local boundary value problem with retarded argument. Complex Var. Elliptic Equ. 2022, 67 (7), 1662–1676.
  20. Shampine L.F. Numerical solution of ordinary differential equations. CRC Press, 1994.
  21. Uğurlu E., Tas K. Dependence of eigenvalues of some boundary value problems. Appl. Math. E-Notes 2021, 21, 81–88.