References
- Krzysztof B., Jakubowski T. Estimates of heat kernel of
fractional Laplacian perturbed by gradient operators. Comm. Math.
Phys. 2007, 271, 179–198. doi:10.1007/s00220-006-0178-y
-
Boyko M.V., Osypchuk M.M. Perturbation of a rotationally invariant
\(\alpha\)-stable stochastic process by
a pseudo-gradient operator. Precarpathian Bull. Shevchenko Sci.
Soc.: Number. 2021, 16 (60), 20–32.
doi:10.31471/2304-7399-2021-16(60)-20-32 (in Ukrainian)
-
Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic Methods in the Theory of
Differential and Pseudo-Differential Equations of Parabolic Type. In:
Ball A.J., Böttcher A., Dym H., Langer H., Tretter C. (Eds.) Operator
Theory: Advances and Applications, 152. Birkhäuser, Basel, 2004.
doi:10.1007/978-3-0348-7844-9
-
Erdelyi A. Higher transcendental
functions, vol. II, Bateman Manuscript Project, New York, 1953.
-
Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall Inc.,
Englewood Cliffs, NJ., 1964.
-
Jakubowski T. Fundamental solution of
the fractional diffusion equation with a singular drift. J. Math.
Sci. (N.Y.) 2016, 218 (2), 137–153.
doi:10.1007/s10958-016-3016-6
-
Loebus J.U., Portenko M.I. On one
class of perturbations of the generators of a stable process.
Theory Probab. Math. Statist. 1995, 52, 102–111. (in
Ukrainian)
-
Osypchuk M.M. On some perturbations of a symmetric stable
process and the corresponding Cauchy problems. Theory Stoch.
Process. 2016, 21(37) (1), 64–72.
-
Osypchuk M.M. On
some perturbations of a stable process and solutions to the Cauchy
problem for a class of pseudo-differential equations. Carpathian
Math. Publ. 2015, 7 (1), 101–107.
doi:10.15330/cmp.7.1.101-107
-
Osypchuk M.M., Portenko M.I. On
simple-layer potentials for one class of pseudodifferential
equations. Ukrainian Math. J. 2016, 67 (11),
1704–1720. doi:10.1007/s11253-016-1184-7
-
Osypchuk M.M., Portenko M.I.
Symmetric \(\alpha\)-stable
stochastic process and the third initial-boundary-value problem for the
corresponding pseudodifferential equation. Ukrainian Math. J. 2018,
69 (10), 1631–1650. doi:10.1007/s11253-018-1459-2
-
Podolynny S.I., Portenko N.I. On multidimentional stable processes
with locally unbounded drift. Random Oper. Stoch. Equ. 1995,
3 (2), 113–124. doi:10.1515/rose.1995.3.2.113
-
Portenko
N.I. Generalized Diffusion Processes. Translations of Mathematical
Monographs, 83. American Mathematical Society, Providence, Rhode Island,
1990.
-
Portenko N.I. Some perturbations of drift-type for symmetric
stable processes. Random Oper. Stoch. Equ. 1994, 2
(3), 211–224. doi:10.1515/rose.1994.2.3.211
-
Portenko N.I. One class
of transformations of a symmetric stable process. Theory Stoch.
Process. 1997, 3(19) (3–4), 373–387.
-
Portenko N.I.
On some perturbations of symmetric stable processes. Probability
theory and mathematical statistics. Proc. of the 7th Japan-Russia
symposium, Tokyo, Japan, July 26-30, 1995. Singapore: World Scientific.,
1996, 414–422.
-
Portenko M.I. Diffusion Processes in Media with
Membranes. Proceedings of the Institute of Mathematics of the Ukrainian
National Academy of Sciences, 10, 1995. (in Ukrainian)