References
- Akhiezer N.I., Krein M.G. On the best approximation, by
trigonometric sums, of differentiable periodic functions. Dokl. AN
SSSR 1937, 15 (3), 107–112. (in Russian)
- Bushanskii A.V. Best harmonic approximation in the mean of
certain functions. In: Studies in the theory of approximation of
functions and their applications. Akad. Nauk Ukrain. SSR, Inst. Mat.,
Kiev, 1978, 29–37. (in Russian)
- Dzyadyk V.K. Best approximation on classes of periodic functions
defined by kernels which are integrals of absolutely monotone
functions. Izv. Akad. Nauk SSSR Ser. Mat. 1959, 23
(6), 933–950. (in Russian)
- Dzyadyk V.K. Best approximation in classes of periodic functions
defined by integrals of linear combinations of absolutely monotonous
kernels. Mat. Zametki 1974, 16 (5), 691–701.
- Hrabova U.Z., Serdyuk A.S. Order estimates for the best
approximations and approximations by Fourier sums of the classes of
\((\psi,\beta)\)-differential
functions. Ukrainian Math. J. 2014, 65 (9),
1319–1331. doi:10.1007/s11253-014-0861-7
- Favard J. Sur l'approximation des fonctions périodiques par des polynomes
trigonométriques. C. R.
Math. Acad. Sci. Paris 1936, 203, 1122–1124. (in
French)
- Favard J. Sur les meilleurs procédes d'approximations de certains
classes de fontions par des polynomes trigonometriques. Bull. Sci.
Math. 1937, 61, 209–224, 243–256. (in French)
- Korneichuk N.P. Exact constants in approximation theory. Encyclopedia
of Mathematics and its Applications, 38. Cambridge University Press,
Cambridge, 1991.
- Korneichuk N.P., Babenko V.F., Ligun A.A. Extremal properties of
polynomials and splines. Naukova Dumka, Kiev, 1992. (in Russian)
- Krein M.G. The theory of best approximation of periodic
functions. Dokl. AN SSSR 1938, 18 (4–5), 245–249.
(in Russian)
- Kushpel' A.K. Estimates for the widths of classes of analytic
functions. Ukrainian Math. J. 1989, 41 (4),
493–496.
- Sz.-Nagy B. Über gewisse Extremalfragen bei transformierten
trigonometrischen Entwicklungen. I. Periodischer Fall. Ber. Verh.
Sächs. Akad. Wiss. Leipzig 1938, 90, 103–134. (in
German)
- Pinkus A. n-Widths in approximation theory. In: Ambrosio L. (Ed.)
Ergebnisse der Mathematik und ihrer Grenzgebiete. Folge 3.
Springer-Verlag, Berlin, 1985.
- Romanyuk A.S. Approximating Characteristics of the Classes of
Periodic Functions of Many Variables. Proceedings of the Institute of
Mathematics of the National Academy of Sciences of Ukraine. Kyiv, 2012.
(in Russian)
- Serdyuk A.S. On the best approximation of classes of convolutions
of periodic functions by trigonometric polynomials. Ukrainian Math.
J. 1995, 47 (9), 1435–1440. doi:10.1007/BF01057518
- Serdyuk A.S. Estimates for the widths and best approximations of
classes of convolutions of periodic functions. Pr. Inst. Mat. Nats.
Akad. Nauk Ukr. Mat. Zastos. 1998, 20, 286–299. (in
Ukrainian)
- Serdyuk A.S. Widths and best approximations for classes of
convolutions of periodic functions. Ukrainian Math. J. 1999,
51 (5), 748–763. doi:10.1007/BF02591709
- Serdyuk A.S. On best approximation in classes of convolutions of
periodic functions. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat.
Zastos. 2002, 35, 172–194. (in Ukrainian)
- Serdyuk A.S. Best approximations and widths of classes of
convolutions of periodic functions of high smoothness. Ukrainian
Math. J. 2005, 57 (7), 1120–1148.
doi:10.1007/s11253-005-0251-2
- Serdyuk A.S. Approximation of classes of analytic functions by
Fourier sums in the uniform metric. Ukrainian Math. J. 2005,
57 (8), 1275–1296. doi:10.1007/s11253-005-0261-0
- Serdyuk A.S., Bodenchuk V.V. Exact values of Kolmogorov widths of
classes of Poisson integrals. J. Approx. Theory 2013,
173, 89–109. doi:10.1016/j.jat.2013.05.002
- Serdyuk A.S., Sokolenko I.V. Asymptotic behavior of best
approximations of classes of Poisson integrals of functions from \(H_\omega\). J. Approx. Theory 2011,
163 (11), 1692–1706. doi:10.1016/j.jat.2011.06.008
- Serdyuk A.S. Sokolenko I.V. Uniform approximation of classes of
\((\psi,\bar\beta)\)-differentiable
functions by linear methods. Zb. prats Inst. mat. NAN Ukr. Kyiv
2011, 8 (1), 181–189. (in Ukrainian)
- Serdyuk A.S., Sokolenko I.V. Asymptotic estimates for the best
uniform approximations of classes of convolution of periodic functions
of high smoothness. J. Math. Sci. (N.Y.) 2021, 252
(4), 526–540. doi:10.1007/s10958-020-05178-1
- Serdyuk A.S., Stepanyuk T.A. Estimations of the best
approximations for the classes of infinitely differentiable functions in
uniform and integral metrics. Ukrainian Math. J. 2015,
66 (9), 1393–1407. doi:10.1007/s11253-015-1018-z
- Serdyuk A.S., Stepanyuk T.A. Order estimates for the best
approximations and approximations by Fourier sums in the classes of
convolutions of periodic functions of low smoothness in the uniform
metric. Ukrainian Math. J. 2015, 66 (12),
1862–1882. doi:10.1007/s11253-015-1056-6
- Serdyuk A.S., Stepanyuk T.A. Uniform Approximations by Fourier
Sums in Classes of Generalized Poisson Integrals. Anal. Math. 2019,
45 (1), 201–236. doi:10.1007/s10476-018-0310-1
- Shevaldin V.T. Widths of classes of convolutions with Poisson
kernel. Math. Notes 1992, 51 (6), 611–617.
doi:10.1007/BF01263308
- Stechkin S.B. On the best approximation of certain classes of
periodic functions by trigonometric polynomials. Izv. Akad. Nauk
SSSR. Ser. Mat. 1956, 20, 643–648. (in Russian)
- Stepanets A.I. Classification and Approximation of Periodic
Functions. In: Hazewinkel M. (Ed.) Mathematics and Its Applications,
333. Kluwer Academic Publishers, Dordrecht, 1995.
- Stepanets A.I. Methods of Approximation Theory. Utrecht,
VSP, 2005.
- Stepanets A.I., Serdyuk A.S. Lower bounds for the widths of
classes of convolutions of periodic functions in the metrics of \(C\) and \(L\). Ukrainian Math. J. 1995,
47 (8), 1271–1282. doi:10.1007/BF01057715
- Sun Y.-S. On the best approximation of periodic differentiable
functions by trigonometric polynomials. II. Izv. Akad. Nauk SSSR.
Ser. Mat. 1961, 25 (1), 143–152. (in Russian)
- Temlyakov V.N. On estimates for the widths of classes of
infinitely differentiable functions. Mat. Zametki 1990,
47 (5), 155–157. (in Russian)
- Temlyakov V.N. Approximation of periodic functions. Comput. Math.
Anal. Ser., Nova Science Publishers, Inc. Commack, NY, 1993.
- Tikhomirov V.M. Some questions in approximation theory.
Izdat. Moskov. Univ., Moscow, 1976. (in Russian)