References
- Anastasiei M. A generalization of Myers theorem. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2007, 53 (1), 33–40.
- Andrews B., Hopper C. The Ricci flow in Riemannian geometry. A complete proof of the differentiable 1/4-pinching sphere theorem. In: Lecture Notes in Mathematics, 2011. Springer, 2011.
- Bourguignon J.P. Ricci curvature and Einstein metrics. In: Lecture notes in Math., 838. Springer, Berlin, 1981.
- Catino G., Cremaschi L., Djadli Z., Mantegazza C., Mazzieri L. The Ricci-Bourguignon flow. Pacific J. Math. 2015, 287 (2), 337–370. doi:10.2140/pjm.2017.287.337
- Chow B., Knopf D. The Ricci flow: an introduction. In: Math. Surveys Monogr., 110. Amer. Math. Soc., 2004.
- DeTurck D. Deforming metrics in direction of their Ricci tensors. J. Differential Geom. 1983, 18 (1), 157–162. doi:10.4310/jdg/1214509286
- Hamilton R.S. Three-manifolds with positive Ricci curvature. J. Differential Geom. 1982, 17 (2), 255–306. doi:10.4310/jdg/1214436922
- Hamilton R.S. A compactness property for solutions of the Ricci flow. Amer. J. Math. 1995, 117 (3), 545–572.
- Li Y. Generalized Ricci flow I: higher-derivative estimates for compact manifolds. Anal. PDE 2012, 5 (4), 747–775. doi:10.2140/apde.2012.5.747
- Shi W.-X. Deforming the metric on complete Riemannian manifolds. J. Differential Geom. 1989, 30 (1), 223–301. doi:10.4310/JDG/1214443292
- Topping P. Lectures on the Ricci flow. In: London Mathematical Society Lecture Note, 325. Cambridge Univ. Press, 2006.
- Wu J.Y. A general Ricci flow system. J. Korean Math. Soc. 2018, 55 (2), 253–292. doi:10.4134/JKMS.j170037
- Wylie W. Complete shrinking Ricci solitons have finite fundemental group. Proc. Amer. Math. Soc. 2008, 136 (5), 1803–1806. doi:10.1090/S0002-9939-07-09174-5