References

  1. Acar O., Altun I. Multivalued F-contractive mappings with a graph and some fixed point results. Publ. Math. Debrecen 2016, 88 (3-4), 305–317. doi:10.5486/PMD.2016.7308
  2. Acar O. Rational Type Multivalued \(F_{G}\)-Contractive Mappings with a Graph. Results Math. 2018, 73 (52), 1–9. doi:10.1007/s00025-018-0813-x
  3. Alfuraidan M.R., Bachar M., Khamsi M.A. Almost monotone contractions on weighted graphs. J. Nonlinear Sci. Appl. 2016, 9 (8), 5189–5195. doi:10.22436/jnsa.009.08.04
  4. Bojor F. Fixed points of Kannan mappings in metric spaces endowed with a graph. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 2012, 20 (1), 31–40. doi:10.2478/v10309-012-0003-x
  5. Delbosco D. Un’estensione di un teorema sul punto fisso di S. Reich. Rend. Semin. Mat. Univ. Politec. Torino 1976, 35, 233–238. (in Italian)
  6. Fallahi K., Aghanians A. Fixed points for Chatterjea contractions on a metric space with a graph. Int. J. Nonlinear Anal. Appl. 2016, 7 (2), 49–58. doi:10.22075/ijnaa.2016.449
  7. Jachymski J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136 (4), 1359–1373. doi:10.1090/S0002-9939-07-09110-1
  8. Jleli M., Samet B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015, 61 (2015), article number 61. doi:10.1186/s13663-015-0312-7
  9. Karapinar E. A Short Survey on the Recent Fixed Point Results on b-Metric Spaces. Constructive Math. Anal. 2018, 1 (1), 15–44.
  10. Khan M.S., Swaleh M., Sessa S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30 (1), 1–9. doi:10.1017/S0004972700001659
  11. Nieto J.J., Rodrı́guez-López R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22 (3), 223–239. doi:10.1007/s11083-005-9018-5
  12. Nieto J.J., Rodrı́guez-López R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sinica (Chin. Ser.) 2007, 23 (12), 2205–2212. doi:10.1007/s10114-005-0769-0
  13. Petruşel A., Rus I.A. Fixed point theorems in ordered \(L\)-spaces. Proc. Amer. Math. Soc. 2006, 134 (2), 411–418. doi:10.1090/S0002-9939-05-07982-7
  14. Skof F. Teorema di punti fisso per applicazioni negli spazi metrici. Atti. Accad. Aci. Torino 1977, 111 (3–4), 323–329. (in Italian)
  15. Vetro C. A Fixed-Point Problem with Mixed-Type Contractive Condition. Constructive Math. Anal. 2020, 3 (1), 45–52. doi:10.33205/cma.684638