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Some extremal problems on the Riemannian sphere

Denega 1.V., Zabolotnyi Ya.V.

In the paper, the open problem on maximum of the product of inner radii of n domains in the
case, when points and domains belong to the unit disk, is investigated. This problem is solved only
for n = 2 and n = 3. No other results are known at present. We obtain the result for all n > 2. Also,
we propose an approach that allows to establish evolutionary inequalities for the products of the
inner radii of mutually non-overlapping domains.

Key words and phrases: conformal domain radius, inner domain radius, mutually non-over-
lapping domains, Green function, logarithmic capacity, transfinite diameter, area-minimization
theorem.
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1 Preliminaries

Let IN, R be the sets of natural and real numbers, respectively, C be the complex plane,
C = CU{oo} be its one point compactification, U be the open unit disk in C, R* = (0, c0).

Let function f(z), meromorphic in a disk |z| < 1, maps univalently disk |z| < 1 onto the
domain B C C such that f(0) = a4, where a € B. Then the value R(B,a) = |f'(0)] is called
conformal radius of the domain B relative to the point a € B. Conformal radius of the domain
B with respect to an infinity point is R(B, o) = R(¢(B),0), where ¢(z) = 1/z.

A function ¢p(z,a), which is continuous in C, harmonic in B\{a} apart from z, vanishes
outside B, and in the neighborhood of a has the following asymptotic expansion

¢p(z,a) = —In|z —a|+ v +0(1), o(l) =0, z—aq,

(if a = oo, then gp(z,00) = In|z| + v+ 0(1), 0(1) — 0, z — o) is called the (classical) Green
function of the domain B with pole at @ € B. The inner radius 7(B, a) of the domain B with
respect to a point a is the quantity e” (see [1,12,15,23,25]).

Since the Green function is a conformal invariant, if a function f maps the domain B con-
formally and univalently onto a domain f(B), then

r(B,a)|f'(a)| =r(f(B), f(a))

for each 2 € B. The inner radius increases monotonically with the growth of the domain.
Namely, if B C B, then
r(B,a) <r(B,a), ac€B.
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It is known [14], that the following inequality |f'(0)| < r(B,a) holds. For a compact set E, its
logarithmic capacity is determined by the equality

1

E = —— Vs
P L@\ )

if the value of r (C\E, o) is finite; otherwise, cap E := 0 (see [1,12]).

Let G be a domain in extended complex plane C.. By a quadratic differential in G we mean

the expression
Q(z)dz*, (M)
where Q(z) is a meromorphic function in G (see, for example, [1,12,15]).

A finite point zg € G is called a zero or a pole of order n of the differential (1) if it is a zero
or a pole, respectively, of the function Q(z).

A circle domain for quadratic differential Q(z)dz? is called simply connected domain G,
containing a unique double pole of the quadratic differential Q(z)dz? in the pointw = a € G,
such that for a univalent conformal mapping w = f(z) (f(a) = 0) of the domain G onto the
unit circle, the following identity holds

2
Q(z)dz* = —kdwiz, keR™.

Problem 1. Find the maximum of the product
n
Hr(Bkrak)r (2)
k=1

wheren € N, n > 2,a;, k = 1,n, are any different fixed points of C, domains By, k = 1,n, such
that a; € By C@andBiﬂB]- =0,1<i,j<ni#j.

For simply-connected domains, Problem 1 was formulated in [13, p. 157]. In the general
case, this problem was formulated in [8] (see also [11, Problem 9.4]).

In 1934, M. A. Lavrentiev [22] solved the problem of the maximum of the product of confor-
mal radii of two non-overlapping simply connected domains.

Theorem 1 ([22]). Let a; and a, be some fixed points of the complex plane C, B, B be any non-
overlapping simply connected domains in C such that a; € By, k € {1,2}. Then the following
inequality holds

R(Bl,ﬂl)R(Bz,ﬂz) < |611 —612|2. (3)

The equality in (3) occurs only in the case, when the domains By and B, are two half-planes,
the imaginary axis is their common boundary and points a1, a; are symmetric relative to their
common boundary.

In 1951, G.M. Goluzin [13] for n = 3 obtained an accurate evaluate

3

64
R Bkr aj <
,El (Bro i) < 813
If a4, ap, and a3 are three equidistant points on the unit circle |z| = 1, then equality occurs
only in the case, when the domains By, B,, and B3 are bounded by rays emanating from the
origin at equal angles to each other and containing a1, a5, and a3 on their bisectors.

lay — ap| - |ag —as| - |ag — as].
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In 1980, G.V. Kuzmina [19] showed that the problem of the evaluation of the product (2) for
n = 4 is reduced to the smallest capacity problem in a certain continuum family and obtained
the exact inequality

The equality occurs only in the case, when the points —1, 1, and a form a regular trian-
gle:a = +iv/3.

In the works of V.N. Dubinin [12] and G.V. Kuzmina [20], the Problem 1 for n = 5 was
solved under the additional assumption on the quintuple ay, .. ., a5, two of which are symmet-
ric relative to the straight line or circle passing through the other three

1
5 2
[TR (B m) <45 -371.5°% ( [T la —ﬂk|> :
k=1

1<k<I<5
The equality occurs for points 1, e_%, 0, e%, co, and domains By, k = 1,5, which are
circular domains of the quadratic differential

26 4+78+1

2
T RFE R dz-.

Q(z)dz* =

No other ultimate results related to Problem 1 for n > 5 are known at present. But, in the
paper [7], for the product (2) the following theorem is obtained.

Theorem 2 ([7]). Letn € N, n > 2,a, € C, By C C, k = 1,n, are, respectively, any set
of different fixed points and domains of the complex plane such that a, € By, k = 1,n,
B; N B; = @, i # j. Then the following inequality holds

ﬁr(Bk,ak) < (n—l)_% ( H }ap—ak}>n i (4)
k=1

1<p<k<n

2 Estimation of the product of the inner radii of non-overlapping domains
belonging to the unit disk
Other problems (see, for example, [2,3,5, 6,9, 10, 16, 26, 27]), similar to Problem 1, were

also interesting, but with an additional condition on the geometric location of the domains
By, k=1,n.

Problem 2. Find the maximum of the product (2), wheren € N, n > 2, a, € U, k = 1,n,
= {z : |z| < 1}, domains B, C U, k = 1,n, such that a; € By and besides Bi(\B; = @,
1<i,j<nis]

For the case of two non-overlapping domains belonging to the unit disk, the following
result is proved.
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Theorem 3 ([21]). For any non-overlapping simply connected domains Dy C {z : |z| < 1} and
points zy € Dy, k € {1,2}, the following inequality holds

2 402 (1 — o2 2
H?’ Dklzk szg)/ (5)
k=1 (1+05)

where p3 = /5 — 2. The equality in (5) occurs in the case z; +z2 = 0, |z| = po, Dy are
corresponding semi-circles.

For the case of three mutually non-overlapping domains belonging to the unit disk, the
following result is obtained.

Theorem 4 ([17]). For any three mutually non-overlapping simply connected domains
Dy C {z:|z| <1} and pointszy € Dy, k € {1,2,3}, the following inequality holds

3
64
[]r(Drz) < 729(223 70v/10). (6)

k=1

The equality in (6) is attained only for the sectors 271/3 and points z{ lying on the bisectors
and on the circle of the radius /+/10 — 3.

No other results related to Problem 2 for n > 4 are known at present.

Let n € IN, n > 2. Denote by M, maximum of the product (2) for all configurations of the
domains By and points a; such that ay € U, k = 1,n, where U = {z : |z| < 1}, and domains
By C U,k = 1,n, such that a € B, C C, besides BiﬂB]- =0,1<ij<ni#j Then we
obtain the following result.

Theorem 5. For an arbitrary n € IN, n > 2, the inequality

n _ 5 n %
(3) (i) (2] << ()

is valid.

Proof. To prove the left side of the inequality (7) it is enough to find the configuration of do-
mains B} and points 4] satisfying all conditions of the Theorem 5, for which

n
n 4)” n+1—+vn2+1
||r Bf,al) > | - \/n2+1—n)
it (Br, i) <n ( n2+1-n+1

The following lemma is true.

Lemmal. LetP, = {z:|z] <1, —Z < arg(z) < £} and p, € R,0 < p, < 1. Then,

4p(1-p")

n(l+p")’ ®)

R (Py, pn) =
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Proof. Consider the function wy(z) = a _Z;)Z. The function maps the sector — I < arg(z) < &

onto a plane with a cross-cut along the real negative half-axis and w,(p) = a _p ;;1)2' And the

n 2
function w}(z) = —F <%> maps the unit disk onto a plane with a cross-cut along the

(1-p")*
real negative half-axis such that w;;, (0) = (1E77. Then the function w(z) = w; ! (w};(z)) maps
the unit disk onto the sector — I < arg(z) < %, besides w(0) = p. An inner radius of the sector

_% < arg(z) < % in the point p is
oy = A =p")
w(0) = n(l+p")"
O]

Examining the expression written in the right side of the equation (8), we obtain that the

maximum inner radius of the sector R (P, p,) is attained for the case p, = V/Vn? +1—nand
is equal to the following value

\ \/n2+1—n<n+1—\/n2—|—1)
VniZ+1l-n+1 '

Dividing the unit disk into n sectors with the central angle 2* and taking points a; on the
bisectors of these sectors at a distance V' v/n2 + 1 — n from the center, we obtain equality

L " nl— V2 1)
ER(PmPn): (%) <\/n2+1—n>< :21+1—n11>

Rinax (Pn; pn) =

SYIS

which proves the left side of the inequality (7).
Let us prove that M, < <%) ® . The area of the domain By will be denoted by S (By) = Si. It

is clear that i Sk < 7. Then from the area-minimization theorem [13, p. 30] among domains
with the saI;:elarea, the largest inner radius has a disk relative to the center. Thus it follows
that 7tr? (B, ax) < Sk and i r? (By,a;) < 1. From the Cauchy inequality of arithmetic and
geometric means, we obtair]i:tllle following relationship

n

k; r% (By, ax) "
=] 17 (Be ax).
k=1

n 2
n Erz(Bk,ak) n
[Troa < | 5| < (1)}
kr%k) X n X n .

Hence

O

For example, if n = 4, then the estimates 0, 04575 < My < 0,0625 are true, that is, the error
in estimating My is relatively small.
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Theorem 6. For any set of different points ay, a; € C\ [—1,1], k = 1,n, and for any collection of
mutually non-overlapping domains By, ay € By C C\ [—1,1], k = 1, n, the following inequality
holds

" NEARN
gr(Bk,ak)< <E> I—[l ak_\/i )

Proof. Let B} be the image of the domain By by the mapping w = z — v/z? — 1. Consider the
branch of the root for which V1 = 1. Taking into account the invariance of the Green function
under conformal and univalent mappings, we get

* 1 * *
88, (z,ax) = gp; (w,a) =In lw — a| +In7 (Bg, a;) +0(1). (10)
k

Note that

ln# =In

1
|w — ag] z—VZ2—1—ap+/a? -1

1 1
41
"l T Ve
Z—ay

1 1
|z — ay| - (x/zzflf\/a%fl) (\/z271+\/a§71>
(z—ak)(\/zz—l—i- a%—l)

1
z+ay

= a2—1
1 \/22—14-\/61%—1
|z — a| Vz2 =1+ /a2 —1—z—uay
21
1 Vi —1 \/zl%——1+1
— ay [ Z2—1—z

Substituting this expression in (10) and taking into account that

2_
—gi_} +1
In Hﬁ —0 as z— aj,

Var—1—ay
the following equality is true

—{—ln Y \/L (Bi,ap) +o(1).
1

=1
g5, (2.0) = In ey
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r (B, ax) = .
—\/a —1

And thus, from above-posed considerations, the equality

Hence,

Bk,ak

n n n a2 _ 1
[Tr Boaw) = rBra) [ ———e (1)
k=1 k=1

k=1 |ap — y/az — 1

follows.

The function w = z — vz2 — 1 maps the points a; onto the points a;, which lie in the
unit circle, and the domains By, that contain, respectively, the points a;, onto the domains
Bf C U, which contain, respectively, the points a;. Therefore, all conditions of the Theorem 6
are satisfied for them and the inequality

[T < (1)

r(By,ap) < | =

k=1 n

is true. Combining the last inequality and the inequality (11), we obtain (9). O

3 Evolutionary inequalities for the products of the inner radii

This section is devoted to obtaining evolutionary inequalities for the functionals of the fol-
lowing type:

I,(1) = r (By,0) ﬁr (Bk, ax),
k=1

n

Yn(l) = r(Boo;Oo) r(Bklak)/
k=1

Jn (1) = r(By,0) Hr B, ax),

where n € N, A, = {ay};_ is an arbitrary fixed system of points of the complex plane C\{0},
By, Bs and {By};_; is an arbitrary system of mutually non-overlapping domains such that
a():OGB()C€,OO€BOQC€,ak€BkC€,k:1,—n

The method, proposed in this paper, originates from the papers [4, 6,18]. The following
results are valid.

Theorem 7. Let n € IN, T € (0,1). Then for any fixed system of different points
Ay = {ar};_; € C\{0} and for any collection of mutually non-overlapping domains By,
ar € By CC,k=0,n,ay =0, the tollowing inequality holds

2(1-1)

In(1) < ”_1%1”(7)(1"(0))7% (lﬁ "lk’> ” ’ (12)

where I,,(7) ::rT(BO,O)inll 7 (B ax), 1(0) = T1 7 (B, ).
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Proof. Let d(E) be the transfinite diameter of the compact set E C C. It is known [1,12,13], that

1
E=d(E)=—=——
Then from Theorem 2 [6] it follows that the following relationships hold
r(BO,O):r(BOﬂoo):_;, B*z{z:leB}. (13)
4 (C\ By) z

Further (see [6]), taking into account the Pélya theorem [24], monotonicity and additivity of
the Lebesgue measure and the area-minimization theorem [13], we get the inequality

1
n 2
)]
k=1

Taking advantage of the Green’s function invariance at conformal and single-leaf mapping,
we have

r (Bo, 0) <

1
88, (2, ax) = 8B/ (w®,a7), w'= .
Then - .
85t (w*,af) = 85t (— —) =In—0r +Inr (B, a) +o(1).
= ’z —“zﬂ

Using simple transformations, we obtain

++1$13++ 1) = In—— 4 In|a[2r (BF, aF 1
gBk+( al) nyl_za;’—l—nr(k,ak)—iro() n‘z_ak’+n|ak| r (B, a) 4+ 0(1).
Hence, ( )
Bkrak
r(Be ag) = ——75-
||
and we arrive at the following inequality
1
r (Bo, O) < T
n y2 (Bk,llk) :
L1
k=1 \ak]
Taking it into consideration, we have
n
[T 7 (B ax)
In(].) < k=1 :
i r? (By ag) | °
k=1 \ak]4

From the Cauchy inequality of arithmetic and geometric means, the following relationship

holds .
1 2 (By, ax) 12 (Bag) \ "
20, (20

= |l k=1 la|
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(” r(Bk,ak)>”
k=1 \ﬂkfz

-5 /4
(HV (B, ﬂk)) (H \ﬂk!> : (14)
k=1

k=1

Whence it is easy to obtain that

1 1
n .2 2 n 2 n
(Z r (Bk,fk)) > | n (H r (Bk/4ﬂk)> >n
=1 |a k=1 la|

From the above arguments it follows that

NI—
=

N—=

[N

Nl—

I,(1) <n™

It is clear that

I,(1) = 7 (By,0) <r” (By, 0) ﬁr (B, ak)> :

k=1
Combining the last equality and the previous inequality, we obtain

1_1=t 2(1-1)

(1) < r*(Bo,0) | n~ =" (i[lr(Bk,ak)> n (f[w) n

k=1

And after some transformations, we get

1-7 2(1-1)

(1) <" (Bo,0) ”_Tf[lr(Bkzﬂk) (Iﬁr(Bk/”k)> ” (f[l!ﬂk\) "
- ~1 -

1-7 2(1-1)
n 1ot n n n n
= rT(BO,O)Hr(Bk,ak)n 2 (Hr(Bk,ak)> (H \ak]>
k=1 k=1 k=1
Whence inequality (12) follows. O

Using Theorem 6 and inequality (14), we obtain the following result.

Corollary 1. Letn € IN, n > 2. Then for any fixed system of different points A, = {ay};_, €
C\[—1,1] and for any collection of mutually non-overlapping domains By, By, a9 = 0 € B, C C,
ar € By C C\ [-1,1], k = 1, n, the following inequality holds

n a2 —1 n :
(1) <n? (H k—2 ) (1}—[1 |ak|> .

k=1|ar — /a3 — 1
Taking into account Theorem 2 and inequality (14), from Theorem 7 we obtain the following

1
=5

result.

Corollary 2. Letn € IN, n > 2. Then for any fixed system of different points A, = {ay};_, €
C\{0} and for any collection of mutually non-overlapping domains By, a, € B, C C, k = 0,n,

ag = 0, the following inequality holds
n
(H |ak|>
k=1

2 2
n n

In(l)gn’% (n—l)nTl( I }ap—ak}>

1<p<k<n
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Theorem 8. Let n € IN, t € (0,1). Then for any fixed system of different points
A, = {ak}k 1 € C and for any collection of mutually non-overlapping domains B, By,
o € Bo C C, a; € By C C, k = 1,n, the following inequality holds

1-t1 1-7

Yu(1) <n™ 77 Ya(7) (Ya(0)) 7,
where Y, (7) := 17 (Bo, o) ]i[ (Bk, ax), Yn(0) = ﬁ 7 (B, ag).-

The proof of Theorem 8 is similar to that of Theorem 7, so we have chosen to omit the
analogous details.

Corollary 3. Letn € IN, n > 2. Then for any fixed system of different points A, = {a,};_, €
C\[—1,1] and for any collection of mutually non-overlapping domains Bes, By, 0 € Bss C C,
ar € By C C\ [-1,1], k = 1, n, the following inequality holds

(a5
() <n 2 [[[|———

k=1 |ay — ll% —1
Taking into account Theorem 2, from Theorem 8 we obtain the following result.

Corollary 4. Let n € IN, n > 2. Then for any fixed system of different points A, =
{ax}y_; € C and for any collection of mutually non-overlapping domains B, By, o € B C C,
ar € By C C, k = 1, n, the following inequality holds

Yn(1)<n%(n—1)"T1< I1 }ap—ak}>n.

1<p<k<n

Theorem 9. Let n € IN, T € (0,1). Then for any fixed system of different points A, =
{ax}i—, € C\{0} and for any collection of mutually non-overlapping domains By, Be, By,
a9 =0¢€ By C C,0 € Bs C C, ay € By C C, k =1,n, the following inequality holds

2(1-7) 1 2(1-1)

Jn(1) < (n+ 1)_(1_T)'%% Jn(T) [Ja(0)] =% TT lax| 72, (15)

k=1

where J,(T) := |7 (Bp,0)r (Boo,oo)rkﬁ[lr (Bk, ax), Jn(0) = kﬁ[lr (Bg, ag).

Proof. Using the constructions given in the proof of Theorem 7, we have

Nl—

r (B, 0) < <r2 (Boo, 0) + irz (B,;L,a,:“)>_ :

k=1

By applying the relationship

we obtain the inequality
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Similarly,

Nl—

7 (Boo, 00) < [fz (Bo,0) + i r* (B, ﬂk)]
k=1

Further, by using the Cauchy inequality of arithmetic and geometric means and by performing
simple transformations, we deduce the estimate

7 (Bo,0) 7 (Beo, ) <

Whence it follows that

Obviously,

(Bo, 0)(Bes, 00) [ [ 7 (B ax) = [r(BO,O)r(Boo,oo)]T<[r(30,0)r(3w,oo)rTﬁr(sk,ak))

k=1

Combining this with inequality (16), we conclude that

Ja(1) < [ (Bo,0) 7 (Bes, ) | (Hr Bk,ak>

2(1-1) 2(1-1)

(1 7) n+l T T2 n n+2
x| (n+1)" Hr (Bx, ax) I lax
k=1

Whence inequality (15) follows. O
As a consequence of Theorem 9 and Theorem 6, we obtain the following result.

Corollary 5. Letn € IN, n > 2. Then for any fixed system of different points A, = {a};_, €
C\[—1,1] and for any collection of mutually non-overlapping domains By, B, By, a9 = 0 €
ByCC,0 € B CC,a, € B, CC\[-1,1],k =1,n, the following inequality holds

[ ) (fe) "

Using Theorem 2 and inequality (16), we have the following result.

Ja (1) < (n+1)" n+2<

Corollary 6. Letn € IN, n > 2. Then for any fixed system of different points A, = {ay};_, €
C\{0} and for any collection of mutually non-overlapping domains By, Beo, By, ap = 0 € By C
C, o € Bo C C, 4t € By C C, k = 1,n, the following inequality holds

2

n—1 1_ﬁ n+2
(1) < (1) 22 ((nM( I w—m) ) (Hw) .
1<p<k<n
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VY AaHil1 pobOTi POTASIHYTO BiAKpUTY NMPOOGAEMY PO MaKCMMyM AOOYTKY BHYTPIIITHIX paAiy-
CiB 11 06AACTEN Y BUMIAAKY, KOAM TOUKM Ta OBAACTI MIiCTSITBCSI B OAMHWYIHOMY Kpy3i. LIst mpobaema
po3B’si3aHa Amile AL 1= 2in = 3. Ha aaHmii yac aBTOpaM HeBiAOMO Ipo iHIIi pesyAbTaT. Mu
OTpMMAaAMU HEPiBHICTb AASI BCix 1 2> 2. KpiM Toro, y cTaTTi 3aIpONOHOBAHO IIAXiA, SIKII AO3BOASIE
BCTAaHOBMTY HEPiBHOCTI €BOAIOIIHOTO TUITy AASI AOOYTKIB BHYTpIIIIHIX paaiyciB obaacTels, 1o He
IIepeTHMHAIOTHCS MiXX coboI0.

Kntouosi cniosa i ppasu: kKoHOPMHMI paaiyc obAacTi, BHYTpilIHIi paaiyc obAacTi, B3a€MHO He-
mepeTyHHI obAacTi, dyHkuis ['pina, Aorapudpmiuna eMHiCTb, TpaHCIiHITHIIL AlaMeTp, TeopeMa PO
MiHiMi3alIiio ITAOLIIL.



