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Some extremal problems on the Riemannian sphere

Denega I.V., Zabolotnyi Ya.V.

In the paper, the open problem on maximum of the product of inner radii of n domains in the

case, when points and domains belong to the unit disk, is investigated. This problem is solved only

for n = 2 and n = 3. No other results are known at present. We obtain the result for all n > 2. Also,

we propose an approach that allows to establish evolutionary inequalities for the products of the

inner radii of mutually non-overlapping domains.
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1 Preliminaries

Let N, R be the sets of natural and real numbers, respectively, C be the complex plane,

C = C
⋃{∞} be its one point compactification, U be the open unit disk in C, R+ = (0, ∞).

Let function f (z), meromorphic in a disk |z| < 1, maps univalently disk |z| < 1 onto the

domain B ⊂ C such that f (0) = a, where a ∈ B. Then the value R(B, a) =
∣

∣ f ′(0)
∣

∣ is called

conformal radius of the domain B relative to the point a ∈ B. Conformal radius of the domain

B with respect to an infinity point is R(B, ∞) = R
(

ϕ(B), 0
)

, where ϕ(z) = 1/z.

A function gB(z, a), which is continuous in C, harmonic in B\{a} apart from z, vanishes

outside B, and in the neighborhood of a has the following asymptotic expansion

gB(z, a) = − ln |z − a|+ γ + o(1), o(1) → 0, z → a,

(if a = ∞, then gB(z, ∞) = ln |z| + γ + o(1), o(1) → 0, z → ∞) is called the (classical) Green

function of the domain B with pole at a ∈ B. The inner radius r(B, a) of the domain B with

respect to a point a is the quantity eγ (see [1, 12, 15, 23, 25]).

Since the Green function is a conformal invariant, if a function f maps the domain B con-

formally and univalently onto a domain f (B), then

r(B, a)
∣

∣ f ′(a)
∣

∣ = r
(

f (B), f (a)
)

for each a ∈ B. The inner radius increases monotonically with the growth of the domain.

Namely, if B ⊂ B′, then

r(B, a) 6 r(B′, a), a ∈ B.
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It is known [14], that the following inequality
∣

∣ f ′(0)
∣

∣ 6 r(B, a) holds. For a compact set E, its

logarithmic capacity is determined by the equality

cap E :=
1

r
(

C\E, ∞
) ,

if the value of r
(

C\E, ∞
)

is finite; otherwise, cap E := 0 (see [1, 12]).

Let G be a domain in extended complex plane Cz. By a quadratic differential in G we mean

the expression

Q(z)dz2, (1)

where Q(z) is a meromorphic function in G (see, for example, [1, 12, 15]).

A finite point z0 ∈ G is called a zero or a pole of order n of the differential (1) if it is a zero

or a pole, respectively, of the function Q(z).

A circle domain for quadratic differential Q(z)dz2 is called simply connected domain G,

containing a unique double pole of the quadratic differential Q(z)dz2 in the point w = a ∈ G,

such that for a univalent conformal mapping w = f (z) ( f (a) = 0) of the domain G onto the

unit circle, the following identity holds

Q(z)dz2 ≡ −k
dw2

w2
, k ∈ R

+.

Problem 1. Find the maximum of the product

n

∏
k=1

r (Bk, ak) , (2)

where n ∈ N, n > 2, ak, k = 1, n, are any different fixed points of C, domains Bk, k = 1, n, such

that ak ∈ Bk ⊂ C and Bi ∩ Bj = ∅, 1 6 i, j 6 n, i 6= j.

For simply-connected domains, Problem 1 was formulated in [13, p. 157]. In the general

case, this problem was formulated in [8] (see also [11, Problem 9.4]).

In 1934, M.A. Lavrentiev [22] solved the problem of the maximum of the product of confor-

mal radii of two non-overlapping simply connected domains.

Theorem 1 ([22]). Let a1 and a2 be some fixed points of the complex plane C, B1, B2 be any non-

overlapping simply connected domains in C such that ak ∈ Bk, k ∈ {1, 2}. Then the following

inequality holds

R (B1, a1) R (B2, a2) 6 |a1 − a2|2 . (3)

The equality in (3) occurs only in the case, when the domains B1 and B2 are two half-planes,

the imaginary axis is their common boundary and points a1, a2 are symmetric relative to their

common boundary.

In 1951, G.M. Goluzin [13] for n = 3 obtained an accurate evaluate

3

∏
k=1

R (Bk, ak) 6
64

81
√

3
|a1 − a2| · |a1 − a3| · |a2 − a3| .

If a1, a2, and a3 are three equidistant points on the unit circle |z| = 1, then equality occurs

only in the case, when the domains B1, B2, and B3 are bounded by rays emanating from the

origin at equal angles to each other and containing a1, a2, and a3 on their bisectors.
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In 1980, G.V. Kuzmina [19] showed that the problem of the evaluation of the product (2) for

n = 4 is reduced to the smallest capacity problem in a certain continuum family and obtained

the exact inequality

4

∏
k=1

R (Bk, ak) 6
9

48/3

(

∏
16k<l64

|al − ak|
)

2
3

.

The equality occurs only in the case, when the points −1, 1, and a form a regular trian-

gle: a = ±i
√

3.

In the works of V.N. Dubinin [12] and G.V. Kuzmina [20], the Problem 1 for n = 5 was

solved under the additional assumption on the quintuple a1, . . . , a5, two of which are symmet-

ric relative to the straight line or circle passing through the other three

5

∏
k=1

R (Bk, ak) 6 4
11
3 · 3−

3
4 · 5−

25
6

(

∏
16k<l65

|al − ak|
) 1

2

.

The equality occurs for points 1, e−
2πi

3 , 0, e
2πi

3 , ∞, and domains Bk, k = 1, 5, which are

circular domains of the quadratic differential

Q(z)dz2 = −z6 + 7z3 + 1

z2(z3 − 1)2
dz2.

No other ultimate results related to Problem 1 for n > 5 are known at present. But, in the

paper [7], for the product (2) the following theorem is obtained.

Theorem 2 ([7]). Let n ∈ N, n > 2, ak ∈ C, Bk ⊂ C, k = 1, n, are, respectively, any set

of different fixed points and domains of the complex plane such that ak ∈ Bk, k = 1, n,

Bi ∩ Bj = ∅, i 6= j. Then the following inequality holds

n

∏
k=1

r (Bk, ak) 6 (n − 1)−
n
4

(

∏
16p<k6n

∣

∣ap − ak

∣

∣

) 2
n−1

. (4)

2 Estimation of the product of the inner radii of non-overlapping domains

belonging to the unit disk

Other problems (see, for example, [2, 3, 5, 6, 9, 10, 16, 26, 27]), similar to Problem 1, were

also interesting, but with an additional condition on the geometric location of the domains

Bk, k = 1, n.

Problem 2. Find the maximum of the product (2), where n ∈ N, n > 2, ak ∈ U, k = 1, n,

U =
{

z : |z| < 1
}

, domains Bk ⊂ U, k = 1, n, such that ak ∈ Bk and besides Bi
⋂

Bj = ∅,

1 6 i, j 6 n, i 6= j.

For the case of two non-overlapping domains belonging to the unit disk, the following

result is proved.
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Theorem 3 ([21]). For any non-overlapping simply connected domains Dk ⊂
{

z : |z| < 1
}

and

points zk ∈ Dk, k ∈ {1, 2}, the following inequality holds

2

∏
k=1

r (Dk, zk) 6
4ρ2

0

(

1 − ρ2
0

)2

(

1 + ρ2
0

)2
, (5)

where ρ2
0 =

√
5 − 2. The equality in (5) occurs in the case z1 + z2 = 0, |zk| = ρ0, Dk are

corresponding semi-circles.

For the case of three mutually non-overlapping domains belonging to the unit disk, the

following result is obtained.

Theorem 4 ([17]). For any three mutually non-overlapping simply connected domains

Dk ⊂
{

z : |z| < 1
}

and points zk ∈ Dk, k ∈ {1, 2, 3}, the following inequality holds

3

∏
k=1

r (Dk, zk) 6
64

729
(223 − 70

√
10). (6)

The equality in (6) is attained only for the sectors 2π/3 and points z∗k lying on the bisectors

and on the circle of the radius
3
√√

10 − 3.

No other results related to Problem 2 for n > 4 are known at present.

Let n ∈ N, n > 2. Denote by Mn maximum of the product (2) for all configurations of the

domains Bk and points ak such that ak ∈ U, k = 1, n, where U =
{

z : |z| < 1
}

, and domains

Bk ⊂ U, k = 1, n, such that ak ∈ Bk ⊂ C, besides Bi
⋂

Bj = ∅, 1 6 i, j 6 n, i 6= j. Then we

obtain the following result.

Theorem 5. For an arbitrary n ∈ N, n > 2, the inequality

(

4

n

)n
(
√

n2 + 1 − n
)

(

n + 1 −
√

n2 + 1√
n2 + 1 − n + 1

)n

6 Mn 6

(

1

n

)
n
2

(7)

is valid.

Proof. To prove the left side of the inequality (7) it is enough to find the configuration of do-

mains B∗
k and points a∗k satisfying all conditions of the Theorem 5, for which

n

∏
k=1

r (B∗
k , a∗k ) >

(

4

n

)n (
√

n2 + 1 − n
)

(

n + 1 −
√

n2 + 1√
n2 + 1 − n + 1

)n

.

The following lemma is true.

Lemma 1. Let Pn =
{

z : |z| < 1;−π

n < arg(z) < π

n

}

and pn ∈ R, 0 < pn < 1. Then,

R (Pn, pn) =
4p (1 − pn)

n (1 + pn)
. (8)
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Proof. Consider the function wn(z) =
zn

(1−zn)2 . The function maps the sector −π

n < arg(z) < π

n

onto a plane with a cross-cut along the real negative half-axis and wn(p) = pn

(1−pn)2 . And the

function w∗
n(z) = pn

(1−pn)2

(

z−1
z+1

)2
maps the unit disk onto a plane with a cross-cut along the

real negative half-axis such that w∗
n(0) =

pn

(1−pn)2 . Then the function w(z) = w−1
n (w∗

n(z)) maps

the unit disk onto the sector −π

n < arg(z) < π

n , besides w(0) = p. An inner radius of the sector

−π

n < arg(z) < π

n in the point p is

w′(0) =
4p (1 − pn)

n (1 + pn)
.

Examining the expression written in the right side of the equation (8), we obtain that the

maximum inner radius of the sector R (Pn, pn) is attained for the case pn =
n
√√

n2 + 1 − n and

is equal to the following value

Rmax (Pn, pn) =
4

n

n
√√

n2 + 1 − n
(

n + 1 −
√

n2 + 1
)

√
n2 + 1 − n + 1

.

Dividing the unit disk into n sectors with the central angle 2π

n and taking points ak on the

bisectors of these sectors at a distance
n
√√

n2 + 1 − n from the center, we obtain equality

n

∏
k=1

R (Pn, pn) =

(

4

n

)n
(
√

n2 + 1 − n
)

(

n + 1 −
√

n2 + 1√
n2 + 1 − n + 1

)n

,

which proves the left side of the inequality (7).

Let us prove that Mn 6

(

1
n

) n
2
. The area of the domain Bk will be denoted by S (Bk) = Sk. It

is clear that
n

∑
k=1

Sk 6 π. Then from the area-minimization theorem [13, p. 30] among domains

with the same area, the largest inner radius has a disk relative to the center. Thus it follows

that πr2 (Bk, ak) 6 Sk and
n

∑
k=1

r2 (Bk, ak) 6 1. From the Cauchy inequality of arithmetic and

geometric means, we obtain the following relationship

n

∑
k=1

r2 (Bk, ak)

n
> n

√

n

∏
k=1

r2 (Bk, ak).

Hence

n

∏
k=1

r (Bk, ak) 6









n

∑
k=1

r2 (Bk, ak)

n









n
2

6

(

1

n

)
n
2

.

For example, if n = 4, then the estimates 0, 04575 6 M4 6 0, 0625 are true, that is, the error

in estimating M4 is relatively small.
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Theorem 6. For any set of different points ak, ak ∈ C \ [−1, 1], k = 1, n, and for any collection of

mutually non-overlapping domains Bk, ak ∈ Bk ⊂ C \ [−1, 1], k = 1, n, the following inequality

holds
n

∏
k=1

r (Bk, ak) 6

(

1

n

) n
2 n

∏
k=1

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣

. (9)

Proof. Let B∗
k be the image of the domain Bk by the mapping w = z −

√
z2 − 1. Consider the

branch of the root for which
√

1 = 1. Taking into account the invariance of the Green function

under conformal and univalent mappings, we get

gBk
(z, ak) = gB∗

k
(w, a∗k ) = ln

1
∣

∣w − a∗k
∣

∣

+ ln r (B∗
k , a∗k ) + o(1). (10)

Note that

ln
1

∣

∣w − a∗k
∣

∣

= ln

∣

∣

∣

∣

∣

∣

1

z −
√

z2 − 1 − ak +
√

a2
k − 1

∣

∣

∣

∣

∣

∣

= ln
1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

∣

1

1 −
√

z2−1−
√

a2
k−1

z−ak

∣

∣

∣

∣

∣

∣

∣

= ln
1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

1 −
(√

z2−1−
√

a2
k−1

)(√
z2−1+

√
a2

k−1
)

(z−ak)
(√

z2−1+
√

a2
k−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ln
1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

1

1 − z+ak√
z2−1+

√
a2

k−1

∣

∣

∣

∣

∣

∣

= ln
1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

√
z2 − 1 +

√

a2
k − 1

√
z2 − 1 +

√

a2
k − 1 − z − ak

∣

∣

∣

∣

∣

∣

= ln
1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

∣

∣

∣

∣

√

z2−1
a2

k−1
+ 1

1 +
√

z2−1−z√
a2

k−1−ak

∣

∣

∣

∣

∣

∣

∣

∣

.

Substituting this expression in (10) and taking into account that

ln

∣

∣

∣

∣

∣

∣

∣

∣

√

z2−1
a2

k−1
+ 1

1 +
√

z2−1−z√
a2

k−1−ak

∣

∣

∣

∣

∣

∣

∣

∣

→ 0 as z → ak,

the following equality is true

gBk
(z, ak) = ln

1

|z − ak|
+ ln

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣

r (B∗
k , a∗k ) + o(1).
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Hence,

r (Bk, ak) =

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣

r (B∗
k , a∗k ) .

And thus, from above-posed considerations, the equality

n

∏
k=1

r (Bk, ak) =
n

∏
k=1

r (B∗
k , a∗k )

n

∏
k=1

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣

(11)

follows.

The function w = z −
√

z2 − 1 maps the points ak onto the points a∗k , which lie in the

unit circle, and the domains Bk, that contain, respectively, the points ak, onto the domains

B∗
k ⊂ U, which contain, respectively, the points a∗k . Therefore, all conditions of the Theorem 6

are satisfied for them and the inequality

n

∏
k=1

r (B∗
k , a∗k ) 6

(

1

n

)
n
2

is true. Combining the last inequality and the inequality (11), we obtain (9).

3 Evolutionary inequalities for the products of the inner radii

This section is devoted to obtaining evolutionary inequalities for the functionals of the fol-

lowing type:

In(1) = r (B0, 0)
n

∏
k=1

r (Bk, ak) ,

Yn(1) = r (B∞, ∞)
n

∏
k=1

r (Bk, ak) ,

Jn (1) = r (B0, 0) r (B∞, ∞)
n

∏
k=1

r (Bk, ak) ,

where n ∈ N, An = {ak}n
k=1 is an arbitrary fixed system of points of the complex plane C\{0},

B0, B∞ and {Bk}n
k=1 is an arbitrary system of mutually non-overlapping domains such that

a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n.

The method, proposed in this paper, originates from the papers [4, 6, 18]. The following

results are valid.

Theorem 7. Let n ∈ N, τ ∈ (0, 1). Then for any fixed system of different points

An = {ak}n
k=1 ∈ C\{0} and for any collection of mutually non-overlapping domains Bk,

ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, the following inequality holds

In(1) 6 n− 1−τ
2 In(τ)

(

In(0)
)− 1−τ

n

(

n

∏
k=1

|ak|
)

2(1−τ)
n

, (12)

where In(τ) := rτ(B0, 0)
n

∏
k=1

r (Bk, ak), In(0) =
n

∏
k=1

r (Bk, ak).
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Proof. Let d(E) be the transfinite diameter of the compact set E ⊂ C. It is known [1,12,13], that

cap E = d(E) =
1

r(C\E, ∞)
.

Then from Theorem 2 [6] it follows that the following relationships hold

r (B0, 0) = r
(

B+
0 , ∞

)

=
1

d
(

C \ B+
0

) , B+ =

{

z :
1

z
∈ B

}

. (13)

Further (see [6]), taking into account the Pólya theorem [24], monotonicity and additivity of

the Lebesgue measure and the area-minimization theorem [13], we get the inequality

r (B0, 0) 6
1

[

n

∑
k=1

r2
(

B+
k , a+k

)

]
1
2

.

Taking advantage of the Green’s function invariance at conformal and single-leaf mapping,

we have

gBk
(z, ak) = gB+

k

(

w+, a+k
)

, w+ =
1

z
.

Then

gB+
k

(

w+, a+k
)

= gB+
k

(

1

z
,

1

ak

)

= ln
1

∣

∣

∣

1
z − a+k

∣

∣

∣

+ ln r
(

B+
k , a+k

)

+ o(1).

Using simple transformations, we obtain

gB+
k

(

w+, a+k
)

= ln
|z|

|1 − za+k |
+ ln r

(

B+
k , a+k

)

+ o(1) = ln
1

|z − ak|
+ ln |ak|2 r

(

B+
k , a+k

)

+ o(1).

Hence,

r
(

B+
k , a+k

)

=
r (Bk, ak)

|ak|2

and we arrive at the following inequality

r (B0, 0) 6
1

[

n

∑
k=1

r2 (Bk, ak)

|ak|4

]
1
2

.

Taking it into consideration, we have

In(1) 6

n

∏
k=1

r (Bk, ak)

[

n

∑
k=1

r2 (Bk, ak)

|ak|4

] 1
2

.

From the Cauchy inequality of arithmetic and geometric means, the following relationship

holds

1

n

n

∑
k=1

r2 (Bk, ak)

|ak|4
>

(

n

∏
k=1

r2 (Bk, ak)

|ak|4

) 1
n

.
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Whence it is easy to obtain that

(

n

∑
k=1

r2 (Bk, ak)

|ak|4

)
1
2

>



n

(

n

∏
k=1

r2 (Bk, ak)

|ak|4

)
1
n





1
2

> n
1
2

(

n

∏
k=1

r (Bk, ak)

|ak|2

)
1
n

.

From the above arguments it follows that

In(1) 6 n− 1
2

(

n

∏
k=1

r (Bk, ak)

)1− 1
n
(

n

∏
k=1

|ak|
) 2

n

. (14)

It is clear that

In(1) = rτ (B0, 0)

(

r1−τ (B0, 0)
n

∏
k=1

r (Bk, ak)

)

.

Combining the last equality and the previous inequality, we obtain

In(1) 6 rτ(B0, 0)






n− 1−τ

2

(

n

∏
k=1

r (Bk, ak)

)1− 1−τ
n
(

n

∏
k=1

|ak|
)

2(1−τ)
n






.

And after some transformations, we get

In(1) 6 rτ (B0, 0)






n− 1−τ

2

n

∏
k=1

r (Bk, ak)

(

n

∏
k=1

r (Bk, ak)

)− 1−τ
n
(

n

∏
k=1

|ak|
)

2(1−τ)
n







= rτ(B0, 0)
n

∏
k=1

r (Bk, ak) n− 1−τ
2

(

n

∏
k=1

r (Bk, ak)

)− 1−τ
n
(

n

∏
k=1

|ak|
)

2(1−τ)
n

.

Whence inequality (12) follows.

Using Theorem 6 and inequality (14), we obtain the following result.

Corollary 1. Let n ∈ N, n > 2. Then for any fixed system of different points An = {ak}n
k=1 ∈

C\[−1, 1] and for any collection of mutually non-overlapping domains B0, Bk, a0 = 0 ∈ Bk ⊂ C,

ak ∈ Bk ⊂ C \ [−1, 1], k = 1, n, the following inequality holds

In(1) 6 n− n
2





n

∏
k=1

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣





1− 1
n (

n

∏
k=1

|ak|
) 2

n

.

Taking into account Theorem 2 and inequality (14), from Theorem 7 we obtain the following

result.

Corollary 2. Let n ∈ N, n > 2. Then for any fixed system of different points An = {ak}n
k=1 ∈

C\{0} and for any collection of mutually non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 0, n,

a0 = 0, the following inequality holds

In(1) 6 n− 1
2 (n − 1)−

n−1
4

(

∏
16p<k6n

∣

∣ap − ak

∣

∣

)
2
n
(

n

∏
k=1

|ak|
)

2
n

.
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Theorem 8. Let n ∈ N, τ ∈ (0, 1). Then for any fixed system of different points

An = {ak}n
k=1 ∈ C and for any collection of mutually non-overlapping domains B∞, Bk,

∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Yn(1) 6 n− 1−τ
2 Yn(τ) (Yn(0))

− 1−τ
n ,

where Yn(τ) := rτ(B∞, ∞)
n

∏
k=1

r (Bk, ak), Yn(0) =
n

∏
k=1

r (Bk, ak).

The proof of Theorem 8 is similar to that of Theorem 7, so we have chosen to omit the

analogous details.

Corollary 3. Let n ∈ N, n > 2. Then for any fixed system of different points An = {ak}n
k=1 ∈

C\[−1, 1] and for any collection of mutually non-overlapping domains B∞, Bk, ∞ ∈ B∞ ⊂ C,

ak ∈ Bk ⊂ C \ [−1, 1], k = 1, n, the following inequality holds

Yn(1) 6 n− n
2





n

∏
k=1

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣





1− 1
n

.

Taking into account Theorem 2, from Theorem 8 we obtain the following result.

Corollary 4. Let n ∈ N, n > 2. Then for any fixed system of different points An =

{ak}n
k=1 ∈ C and for any collection of mutually non-overlapping domains B∞, Bk, ∞ ∈ B∞ ⊂ C,

ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Yn(1) 6 n− 1
2 (n − 1)−

n−1
4

(

∏
16p<k6n

∣

∣ap − ak

∣

∣

) 2
n

.

Theorem 9. Let n ∈ N, τ ∈ (0, 1). Then for any fixed system of different points An =

{ak}n
k=1 ∈ C\{0} and for any collection of mutually non-overlapping domains B0, B∞, Bk,

a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Jn(1) 6 (n + 1)−(1−τ) n+1
n+2 Jn(τ)

[

Jn(0)
]− 2(1−τ)

n+2
n

∏
k=1

|ak|
2(1−τ)

n+2 , (15)

where Jn(τ) :=
[

r (B0, 0) r (B∞, ∞)
]τ n

∏
k=1

r (Bk, ak), Jn(0) =
n

∏
k=1

r (Bk, ak).

Proof. Using the constructions given in the proof of Theorem 7, we have

r (B0, 0) 6

(

r2 (B∞, ∞) +
n

∑
k=1

r2
(

B+
k , a+k

)

)− 1
2

.

By applying the relationship

r
(

B+
k , a+k

)

=
r (Bk, ak)

|ak|2
,

we obtain the inequality

r (B0, 0) 6

[

r2 (B∞, ∞) +
n

∑
k=1

r2 (Bk, ak)

|ak|4

]− 1
2

.
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Similarly,

r (B∞, ∞) 6

[

r2 (B0, 0) +
n

∑
k=1

r2 (Bk, ak)

]− 1
2

.

Further, by using the Cauchy inequality of arithmetic and geometric means and by performing

simple transformations, we deduce the estimate

r (B0, 0) r (B∞, ∞) 6

(

n

∏
k=1

|ak|
) 2

n+2

(n + 1)
n+1
n+2

(

n

∏
k=1

r (Bk, ak)

) 2
n+2

.

Whence it follows that

Jn (1) 6 (n + 1)−
n+1
n+2

(

n

∏
k=1

r (Bk, ak)

)1− 2
n+2
(

n

∏
k=1

|ak|
) 2

n+2

. (16)

Obviously,

r(B0, 0)r(B∞, ∞)
n

∏
k=1

r (Bk, ak) =
[

r (B0, 0) r (B∞, ∞)
]τ
(

[

r (B0, 0) r (B∞, ∞)
]1−τ n

∏
k=1

r (Bk, ak)

)

.

Combining this with inequality (16), we conclude that

Jn(1) 6
[

r (B0, 0) r (B∞, ∞)
]τ

(

n

∏
k=1

r (Bk, ak)

)

×






(n + 1)−

(1−τ)(n+1)
n+2

(

n

∏
k=1

r (Bk, ak)

)− 2(1−τ)
n+2

(

n

∏
k=1

|ak|
)

2(1−τ)
n+2






.

Whence inequality (15) follows.

As a consequence of Theorem 9 and Theorem 6, we obtain the following result.

Corollary 5. Let n ∈ N, n > 2. Then for any fixed system of different points An = {ak}n
k=1 ∈

C\[−1, 1] and for any collection of mutually non-overlapping domains B0, B∞, Bk, a0 = 0 ∈
B0 ⊂ C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C \ [−1, 1], k = 1, n, the following inequality holds

Jn (1) 6 (n + 1)−
n+1
n+2



(n)−
n
2

n

∏
k=1

∣

∣

∣

∣

∣

∣

√

a2
k − 1

ak −
√

a2
k − 1

∣

∣

∣

∣

∣

∣





1− 2
n+2 (

n

∏
k=1

|ak|
) 2

n+2

.

Using Theorem 2 and inequality (16), we have the following result.

Corollary 6. Let n ∈ N, n > 2. Then for any fixed system of different points An = {ak}n
k=1 ∈

C\{0} and for any collection of mutually non-overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂
C, ∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequality holds

Jn (1) 6 (n + 1)−
n+1
n+2



(n − 1)−
n
4

(

∏
16p<k6n

∣

∣ap − ak

∣

∣

) 2
n−1





1− 2
n+2 (

n

∏
k=1

|ak|
) 2

n+2

.
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У данiй роботi розглянуто вiдкриту проблему про максимум добутку внутрiшнiх радiу-

сiв n областей у випадку, коли точки та областi мiстяться в одиничному крузi. Ця проблема

розв’язана лише для n = 2 i n = 3. На даний час авторам невiдомо про iншi результати. Ми

отримали нерiвнiсть для всiх n > 2. Крiм того, у статтi запропоновано пiдхiд, який дозволяє

встановити нерiвностi еволюцiйного типу для добуткiв внутрiшнiх радiусiв областей, що не

перетинаються мiж собою.

Ключовi слова i фрази: конформний радiус областi, внутрiшнiй радiус областi, взаємно не-

перетиннi областi, функцiя Грiна, логарифмiчна ємнiсть, трансфiнiтний дiаметр, теорема про

мiнiмiзацiю площi.


